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Abstract

The rise of quantum computing poses significant threats to classical public key cryp-
tographic systems, prompting the development of post quantum cryptography (PQC)
schemes that remain secure against quantum attacks. While it is well understood how
classical cryptographic schemes and their underlying big number problems can be ex-
ecuted efficiently, for PQC schemes, like ML-DSA (standardized in 2024 as FIPS204),
it is not as straightforward as for classical schemes because these schemes are based
on polynomial modulo arithmetics on small numbers (range of 32 bits). In this project,
we focus on researching how ML-DSA can be efficiently implemented on OpenTitan
Big-Number Accelerator (OTBN), a security-focused cryptographic co-processor of the
OpenTitan root of trust project. The OTBN features 256-bit wide registers to facilitate
efficient big number operations, but it lacks SIMD capabilities, which would be highly
beneficial for an efficient ML-DSA execution. We therefore propose a generic low-cost
SIMD instruction extension for the OTBN and implement it in hardware focusing on
reusing existing resources. We show the benefits of the proposed instructions on an
NTT benchmark, a salient computation in ML-DSA, resulting in a speed up of 3.46x.
In addition, we synthesize the design on a TSMC65 technology node achieving a fre-
quency of 125 MHz and area overhead of 23 %. The second part of the project focuses on
optimizing the implementation. This results in an optimized design achieving a speed
up of 3.27x whilst only leading to an area overhead of 19 %, increasing the area of the
complete Earlgrey OpenTitan chip by less than 2 %.
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Chapter

Introduction

The today used public key cryptography (PKC) schemes are all based upon mathemati-
cal problems that are hard to solve on current computing platforms. Recent advances
in quantum computing however pose a threat to these PKC schemes due to Shor’s
algorithm [1]. This algorithm allows to solve the PKC underlying problems i.e., integer
factorization and discrete logarithms, in polynomial time on large-scale quantum com-
puters. The existence of such systems seems to be realistic in the near future [2]. Due to
these reasons, the National Institute of Standards and Technology (NIST) has started to
standardize post quantum cryptography (PQC) schemes for digital signatures and key
exchange mechanisms which are said to be resistant to quantum computer based attacks.
One of these schemes for digital signatures is ML-DSA (Module-Lattice-Based Digital
Signature Standard), previously known as DILITHIUM [3] and standardized in 2024 as
FIPS 204 [4]. ML-DSA and most of the other selected schemes are lattice based algorithms
operating over the ring of integers modulo a small prime which is typically smaller
than 32 bits. In particular, one compute bottleneck is the Number Theoretic Transform
(NTT), a variant of a discrete Fourier transform (DFT), can be efficiently computed using
the Fast Fourier Transform (FFT) algorithm. The FFT algorithm operates in-place and
requires to compute a specific function (named butterfly) repeatedly and therefore its
required arithmetic operations could benefit strongly from Single Instruction Multiple
Data (SIMD) vector instructions.

Designing efficient systems to execute lattice-based cryptography schemes is an active
area of research and a lot of work has been published covering a broad range of strate-
gies [5,6,7,8,9, 10, 11, 12]. These strategies range from full data flow implementations
to SIMD instruction set architecture (ISA) extensions where some work targets the Open-
Titan Big-Number Accelerator (OTBN), a security-focused cryptographic co-processor
of the OpenTitan root of trust project.

The OpenTitan project is an open-source project that seeks to deliver a transparent,
vendor-agnostic, and high-quality silicon root of trust (RoT) ecosystem. Such hardware
RoT are the basic building blocks to enable a secure computing infrastructure. The Open-
Titan project features a collection of hardware IPs as well as two top level designs for a



1. Introduction

wide range of security applications. Because currently used cryptographic algorithms
like RSA are often based upon big numbers, the OpenTitan project features a dedicated
security hardened big number core named OpenTitan Big-Number Accelerator (OTBN).
This accelerator has two instruction sets. One operates on regular 32-bit registers and is
comparable to the RV32I instruction set. The second instruction set operates on special
256-bit wide registers which are beneficial for big-number arithmetics as found for
example in RSA exponentiation. This allows the Ibex core to offload computations to
improve the overall runtime.

The goal of this project was to summarize the existing work related to efficient im-
plementations of Module-Lattice-Based Digital Signature Standard (ML-DSA) and then
elaborate an OTBN extension proposal and finally implement and optimize the exten-
sion. This proposed extension should however not be fully specialized on lattice-based
schemes but should have rather a generic character and lightweight area requirements.
The reason is that the OTBN is intended to be used as a subpart of a heterogenous system
on chip (SoC) to accelerate a broad range of PQC and current cryptographic schemes.
A solution with relatively extreme area requirements but a very high performance is
therefore not suitable. Also, keep in mind that the special security requirements (intro-
duced in Section 2.6.2) add considerable overhead to any implementation and thus more
generic and lightweight implementations are even more appealing.

As will be explained in Section 2.3, lattice-based cryptographic schemes heavily rely
on Keccak functions and polynomial multiplications. In regard to Keccak computation,
the OpenTitan ecosystem already features a dedicated IP block named KMAC which
efficiently computes the required Keccak functions. Earlier work [11] already discussed
the use of this IP block for PQC schemes and lowRISC is currently looking into this ap-
proach. This work therefore focused only on enabling efficient processing of polynomial
arithmetics.

This report first discusses the required background about PQC schemes, the NTT,
modulo reductions, and the OTBN in more detail in Chapter 2. Chapter 3 discusses
related work and proposes an ISA extension hereinafter referred to as the baseline
design. The implementation thereof is documented in Chapter 4 and its performance as
well as the area impact is discussed in Chapter 5 and Chapter 6, respectively. A more
in-depth analysis of the implementation is performed in Chapter 7 which finally results
in a design optimization proposal. Chapter 7 documents the implementation of the
optimization proposal and also features an in-depth analysis of the results, comparing
the baseline and the optimized design with the original OTBN.



Chapter

Background

This chapter explains the required cryptographic background on post quantum cryp-
tography schemes, the schemes themselves and implementation relevant aspects. This
includes polynomial arithmetics, the Number Theoretic Transform (NTT), and modular
reduction and multiplication algorithms. As last part, it introduces the OpenTitan project
and the architecture of the OpenTitan Big-Number Accelerator (OTBN).

2.1. Lattice-based cryptography

Classical cryptographic methods, such as RSA and elliptic curve cryptography, rely
on the computational hardness of problems like integer factorization and discrete log-
arithms. However, these methods are vulnerable to quantum computers, which can
efficiently solve these problems using algorithms like Shor’s algorithm [1]. This al-
gorithm allows to solve the classical cryptographic methods” underlying problems in
polynomial time on large-scale quantum computers which seems to be realistic in the
near future [2].

In the last years, a lot of research has been conducted to design new quantum resis-
tant cryptographic methods. One of the most promising types of quantum resistant
cryptographic systems that emerged is based upon lattice-based problems. Unlike
classical systems, lattice-based cryptographic schemes are based on hard problems in
high-dimensional geometries called lattices. Simply put, a lattice is a grid-like arrange-
ment of points in multidimensional space formed by linear combinations of basis vectors
with integer coefficients. One of the best known problems is the shortest vector problem
(SVP) where, given a lattice, the goal is to find the shortest possible non-zero vector
inside the lattice. This problem is believed to be hard to solve in high-dimensional
lattices. Most cryptographic systems however do not directly rely on such a search
problem but are based on more elaborated variants like the Learning with Error (LWE)
problem [13].

The Learning with Error (LWE) problem is a special kind of solving a system of
linear equations over a lattice where these equations represent the information to
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be encrypted [14]. These equations consist of polynomials from a polynomial ring
Ry = Z,4[X]/ (X" + 1) defined by the cyclotomic polynomial X" 4- 1. This ring includes
polynomials that have coefficients from a ring over integers modulo a ring isomorphism
q, denoted as Z,. The ring isomorphism g is mostly chosen to be a prime. When per-
forming arithmetics like adding or multiplying polynomials from R, the resulting
coefficients therefore must be reduced by the prime g. This modulo reduction satisfying
r = x mod g can be performed in either signed or unsigned congruence representa-
tion. For an odd prime g, the signed representation defines the elements of Z; to be

in the range of [— %, %} and its reduction is denoted as r = x mod *4. Elements in

unsigned representation are within [0,g[ and the reduction is denoted as r = x mod g.
The inverse multiplicative element denoted as x = a~! of a € Z, is an element that
satisfies ax =1 (mod g) which can be written as x =a~! (mod g). A reader searching
for a more detailed introduction to algebraic number theory and especially lattice based
encryption is referred to [13].

Returning back to the Learning with Error (LWE) problem, this problem can be
thought of as the following: Given a random matrix A € Z'"", a secret vector s € Z;
and a small random error vector e € Zf, the system of equations is

b=A-s+e (modq). (2.1)

The problem now is to recover the secret vector s from only the information A and b.
Under special parameters, this turns out to be a hard problem due to the introduced
error as regular methods like Gaussian elimination cannot be applied. It can even be
shown that an LWE problem can be approximated to versions of known NP-hard lattice
problems giving LWE problems strong worst-case hardness security proofs [13].

2.2. Digital signatures

Digital signatures can be used to ensure the integrity and authenticity of a message.
A signer can create a pair of secret and public keys and then sign a message with the
private key. This allows anyone with the corresponding public key to verify that the
message originated from the sender and has not been altered whilst transmitting. As
only the signer is in possession of the private key, any receiver can also verify the
authenticity of the sender, i.e., whether the message originates from the sender and not
an adversary [15]. In the context of a RoT system, such digital signatures can be used
to verify firmware updates before installing them and thus ensure that only trusted
firmware is running on the protected system. This requires that the public key is secretly
distributed to the RoT system beforehand.

A common approach to creating a digital signature is defined in [16]. The message to
be signed is first hashed and then the signature is generated using the private key. The
resulting signature then can be verified by the receiver by again hashing the received
message and then verifying the signature using the public key and hashed data. Another
use of digital signatures is in the public key infrastructure context where certificates are
signed by trusted certificate authority [4].
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2.3. ML-DSA

The ML-DSA is a new digital signature algorithm which has been standardized in 2024
as FIPS 204 [4] and previously was known as Dilithium [3]. Its security is based on
the Module-Learning with Error (MLWE) problem which is a generalization of the
LWE problem. In the MLWE setting, the module Z,; is replaced by the polynomial ring
R, with g = 2% — 213 41 = 8380417 and n = 256. For the remainder of this work, g
and n refer to these values if not stated otherwise. The ML-DSA offers three levels of
security with the lowest level named ML-DSA-44 and the higher levels ML-DSA-65 and
ML-DSA-87. The suffix of the levels (i.e. -44) relates to the dimensions of the used lattice
space which, due to the nature of MLWE problems, scale the hardness of the problem.
Note, that scaling the hardness directly scales the computational complexity of ML-DSA.

The effective algorithms for key generation, signing, and verifying are given in Al-
gorithms 1 to 3 and in the following explained briefly. A detailed explanation and the
definition of the helper functions can be found in the standard [4].

The key generation described in Algorithm 1 requires a random 32-bit seed as input
and produces a public and private key. This seed is used to generate other seeds by
expanding it using a special XOF (eXtendable-Output Function) which is based upon
SHAKE256. Based on these created seeds, the public matrix A as well as the secret
vectors S and S, are pseudorandomly sampled from R,. Finally, the public value
t = As; + sy is computed.

The message signing, described in Algorithm 2, takes the private key and the message
as inputs and outputs a signature. First, the public matrix A is generated using the
public seed p and the XOF. Within a rejection sampling loop, a possible signature is
computed and checked whether it would leak information about the private key. This
computation includes multiple polynomial multiplications whereas the sampling of the
challenge is based also on the selected XOF. As this is a rejection sampling approach, the
runtime is not deterministic. The average number of required rounds is around 5 [4].
An efficient computation is therefore of great importance.

The verifying process in Algorithm 3 takes the public key, the message and signature
as inputs and returns whether the signature is valid or not. It again regenerates the
public matrix A, computes the challenge value, and finally performs the check using
multiple polynomial multiplications.

To summarize, all three algorithms heavily rely on the chosen XOF and polynomial
arithmetics, especially multiplication of polynomials. From a computational point
of view, the ML-DSA was developed such that the polynomial multiplication can be
improved by leveraging the Number Theoretic Transform (NTT) which is explained
in Section 2.4. In the context of the OpenTitan ecosystem, the computation of the XOF
can be outsourced to the dedicated Keccak module named kmac. However, the NTT
computations remain a bottleneck for an ML-DSA implementation on the current Ibex
or OTBN processors. Developing an ISA extension for OTBN is therefore of greater
importance to enable an efficient ML-DSA implementation.
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Algorithm 1: ML-DSA key generation [4].
Input :32-bit Seed ¢.
Output:Public key pk and private key sk.

1 (p,0’,K) < H (¢||IntegerToBytes(k,1)||IntegerToBytes(¢,1),128)

2 A<—ExandA(p) // A 1is generated and stored in NTT representation
3 (s1,82) < ExpandS(p’)

4 t<NTT (AONTT(sl)) + sy // compute t= As| +s1
5 (t1,ty) < Power2Round () // compress t

6 pk < pkEncode (p,t1)

7 tr < H (pk,64)

8 sk < skEncode (o, K, tr,s1,82,t0)
9 return (pk,sk)

2.4. Polynomial multiplication

A polynomial multiplication with polynomials from R, = Z,[X]/(X" 4 1) is an essen-
tial operation for many lattice-based cryptographic schemes. The simplest approach
to multiplying two polynomials of degree n requires O(n?) multiplications as each
coefficient is multiplied by every other coefficient. However, such a polynomial multi-
plication can be viewed as a negative-wrapped convolution which allows to compute it
more efficiently by making use of the convolution theorem and the Number Theoretic
Transform (NTT). The NTT is a variation of the DFT over finite fields which thus can
be efficiently computed by leveraging the FFT algorithm. By using the FFT-like NTT,
the required coefficient multiplications can be reduced to O(nlog(n)). The following
sections summarize the key concepts of the NTT based on the tutorial [17].

2.4.1. Number Theoretic Transform

A regular polynomial multiplication where the polynomials G(x) and H(x) of degree
n — 1 are from the ring Z,[x] (note the missing cyclotomic polynomial X" + 1) is defined
as

2(n—1)
Y(x)=G(x)-H(x)= ) yx* 2.2)
k=0
k
where Yk = Zgihk,i mod g. (2.3)
i=0

This is equivalent to a linear convolution between the coefficients” vectors g and h

k

ylk] = (g +h)[k] = gg[i]h[k—i}- (2.4)
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Algorithm 2: ML-DSA signing [4].

Input :Private key sk, formatted message M’ and per message randomness or

dummy variable rnd.

Output:Signature 0.

1 (p,K,tr,81,82,t)) < skDecode (sk)

2 81 < NTT (s1)

3 §2 ~— NTT (Sz)

4§ < NTT(sp)

5 A<+ ExpandA (p) // A is generated and stored in NTT representation
6 y < H (BytesToBits (tr) || M’,64)

7 p" < H(K||rnd||p,64) // compute private random seed
8 k<0 // initialize counter «x
9 (z,h) L
10 while (z,h) = | do

11 | y < ExpandMask (p”,x)

2 | w< INTT (A oNTT (y)>

13 | wjp < HighBits (w)

14 | ¢+« H(p||wlEncode (w1),A/4)

15 | ¢ < SamplelnBall (¢)

16 ({cs1)) <~ INTT (€0 8;)

17 | ((cs2)) <~ INTT (¢ 0 8p)

18 | z<y+ ((cs1))

19 | 1o ¢ LowBits (w — ({cs2)))

20 | if llzlle =1 — Bor [xo]lw =72 — b then

21 | (zh) L

22 else

23 ({cto)) <~ INTT (¢ o t)

24 h < MakeHint (—({cto)), w — ({cs2)) + ({(cto)))

25 if || ((cto))||co > y2 OF the number of 1s in h is greater than w then
26 | (zh)« L

27 end

28 end

29 K—Kx+/
30 end
31 0 < sigEncode (¢,z mod g,h)
32 return o
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Algorithm 3: ML-DSA verifying [4].
Input :Public key pk and message M'. Signature o
Output:Boolean

(p,t1) < pkDecode (pk)
(¢,z,h) « sigDecode (0)
if mathbfh = L then
‘ return false
end
A + ExpandA (0) // A is generated and stored in NTT representation
tr < H (pk,64)
u < H (BytesToBits (tr) || M’,64)
¢ < SampleInBal (¢)

W, « INTT <A oNTT (z) — NTT(c) o NTT <t1 : 2d>>

O 0 NN S Ul e W N =

[y
o

approx
/] Wippror = Az —cty - 24

11w} < UseHint (h, w;ppmx)

12 ¢« H (y| |wlEncode (w}) ,/\/4)

13 return [[|z]lo <71 — B] and [6 =7

For ML-DSA and similar schemes the polynomial are however in the quotient ring
Ry = Z4[X]/(X" 4 1). The same trick can be applied when using a negative wrapped
convolution (also named negacyclic convolution) which is defined as:

n—1
NWC(x)= Y ax* =Y(x) mod (x" +1) (2.5)
k=0
k n—1
where ¢ = Zgigk,i — Z Qilgyin—i modg (2.6)
i=0 i=k+1

As a next step, the convolution is reduced to a pointwise multiplication in the NTT
domain, similar to how one can convert a convolution into a pointwise multiplication
in the Fourier domain. But for this, the polynomial coefficients must be first converted
into the NTT domain. The NTT to compute a negative wrapped convolution requires
the existence of a primitive 2n-th root of unity ¢ (the root of unity for a DFT is eizn%n).
A polynomial a can be transformed into the NTT domain with Definition 2.1 and back
with Definition 2.2.

Definition 2.1 (NTT). The Negative-Wrapped Number Theoretic Transform of a vector
of polynomial coefficients a is defined as 4 = NTT(a), where:

a=Y ¢**a; modg (2.7)
i=0
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and j=0,1,2,...,n — 1. The factors 4)2ij +1 are called twiddle factors.

Definition 2.2 (INTT). The Negative-Wrapped Inverse Number Theoretic Transform
(INTT) of an NTT vector a is defined as a = INTT(4), where:

n—1 o
ai=n"l)_ <p_(2”+])ﬁj mod g (2.8)
j=0

andi=0,1,2,...,n — 1.

The NTT and the INTT only differ in the scaling factor n~! and the transposed ¢
elements.

A negative wrapped convolution ¢ of polynomials a,b € R, can therefore be computed
as a pointwise multiplication in the NTT domain as

¢ = INTT (NTT (a) o NTT (b)) 2.9)

where o is an elementwise vector multiplication in Z,.

These transforms still have a complexity of O(n?). To reduce the computation com-
plexity down to O(nlogn), the final trick is to apply the FFT algorithm to divide and
conquer the computation from an NTT of size 2n into two NTT of size n and so forth.
This is possible because the selected 2n-th root of unity ¢ is periodic (¢*+?" = ¢*) and
symmetric (¢*+" = —¢F). An NTT or INTT for ML-DSA where 1 = 256 and g = 8380417
can thus be split into 8 so called layers of butterflies. Figure 2.1 shows the layers for an
example where n = 8. For the NTT, the Cooley-Tukey (CT) butterfly (Figure 2.2 left)
is used whereas for the INTT the similar Gentleman-Sande (GS) butterfly (Figure 2.2
right) is used. Using the FFT approach results that the transformed vector a is ordered
in bit-reversed order. For the cryptographic usage of the NTT, this does not matter as
the transformed values do not have any meaning (compared to the frequency for a DFT)
and the INTT expects the input in bit-reversed order.

2.4.2. NTT implementation

From an implementation viewpoint, there exist multiple algorithms to perform the FFT-
based NTT and INTT. Whereas some apply a recursive approach for each element there
exist iterative algorithms which compute each layer sequentially. The benefit of such
iterative algorithms is that they can operate in-place, reducing the memory footprint
significantly. In addition, all butterflies of a layer are fully independent, and therefore
its computation can easily be vectorized. For executing vectorized computations SIMD
instructions are strongly beneficial and thus are the main interest for this work. Another
optimization is to precompute the twiddles factors and load the values from memory
during computation which trades increased code size for a reduced execution time. Two
of such implementations can be found in [4] or in [12]. The NTT and INTT algorithms
of [12] are Algorithm 4 and Algorithm 5, respectively. These are used to benchmark the
implementation of this work (see Chapter 5).
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P> dg

—)al

—)az

—)ag

—)a4

P> ag

—)ae

—)a7

Layer 3 ' Layer2 " Layer1

Figure 2.1.: A NTT and INTT with the butterflies for n = 8. The twiddle factors ¢ are
indexed with the bit-reversed order. The scaling factor at the end of the INTT
of n~! is omitted.

NTT Butterfly INTT Butterfly

Figure 2.2.: Left: Cooley-Tukey butterfly. Right: Gentleman-Sande butterfly.
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Algorithm 4: NTT algorithm from [12].

Input :a=(ay,...,a,-1) € Z; with q primeand =1 mod 21, n = 2% fork € N,
precomputed table ® build from powers of ¢ in bit-reversed order, for ¢ a
2n-th root of unity

Output:a < NTT(a) inplace and in bit-reversed order

1t<nform=1m<nm=2ndo
2 t+t/2

3 fori=0;i<m;i++ do

4 ]‘1%21'1'

5 o2 +t—1

6 S« P[m + 1]

7 forj=j1;j<j»j++do
8 U< aj

9 V<aj-S modg
10 aj < U+V modgq
11 ajyp < U—V modgq
12 end

13 end

14 end

15 return a

2.5. Modular multiplication algorithms

Most of the discussed operations for ML-DSA operate over a finite field and therefore
theoretically require modular reduction after each operation. To compute a modular
multiplication efficiently without long trial divisions, well-known algorithms are the
Montgomery multiplication [18] or Plantard multiplication [19]. There also exists an
optimized version that works with signed integers [20]. This is used in the official
ML-DSA reference implementation. However, in the context of OTBN, unsigned values
are much better supported because the ISA lacks support for sign extension. Due to
this reason, only the unsigned Montgomery and Plantard algorithms are considered for
this work. Both of these methods require the multiplication operands to be transformed
in a special representation prior to computing the multiplication. This transform is
an expensive computation and thus these methods are only useful if values must be
multiplied several times before transforming the value back which is exactly the case
when computing an NTT. The additions and subtractions of a butterfly can be directly
performed in this special representation and therefore the NTT coefficients and the final
results must only be transformed once.
The Montgomery multiplication described in Algorithm 6 actually computes

r=a-b(2°%) modg (2.10)

where d is the bit width of the operands a and b. For a correct result, the multiplication

11



2. Background

Algorithm 5: INTT algorithm from [12].

Input :4=(dy,...,4,-1) € Zg in bit-reversed order with g prime and g =1
mod 21, n =2 fork € N, precomputed table &1 build from powers of
¢~ ! in bit-reversed order, for ¢ a 2n-th root of unity

Output:a < NTT(4) inplace and in bit-reversed order

1t 1form=nm,m>1, m=m/2do
2 j1<—0

3 h<m/2

4 fori=0;i<hi++do

5 jz(—j1+f—1

6 S+ & h+1]

7 forj=j1;]<j»j++do

8 U« a;

9 V<—ajy

10 aj < U+V modgq

1 aj4t < (U—V)-S modg
12 end

13 J1<j1+2t

14 end

15 t < 2t

16 end

17 forj=0;j <n;j++ do

18 | aj=a;-n"' modg

19 end

20 return a
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operands must be converted in a special representation called the g-residue by computing
CMontgomery = @Normal 27 mod q- (2.11)

As this special representation is based upon a power of two the modulo and divisions
operations required can be implemented efficiently with bit masking and shifting. The
result r is in the g-residue representation and can be transformed back by applying the
Montgomery multiplication with the second input being 1. An alternative approach
to obtain a correct result directly in the normal representation is to transform only one
of the inputs into the Montgomery representation and then perform the Montgomery
multiplication. The result then is already in the normal representation as the factor 24
multiplied to the one operand is canceled with the 2% during the computation. This
approach is especially useful when computing an NTT because the twiddle factors
can be stored in the Montgomery representation and thus no transformations at all are
required at runtime. A more comprehensive tutorial can be found in [21].

Algorithm 6: Unsigned Montgomery multiplication [18].
Input :a,b € [0,9],9€]0,2%[, R=(—g~') mod 2*
Output:r =ab(2™%) modgandr € [0,q]

1 c=ab

d
2 1= {c—l— [[C]dR]dq}
if r > g then
‘ returnr — g
end
return r

SN Ul e W

The Plantard multiplication [19] in Algorithm 7 is similar to the Montgomery multi-
plication except it uses a different residue representation for the operands and result.
This representation sets the conversion factor to —272% and thus a value in the Plantard
representation requires 2d bits. The benefit of using the Plantard representation is that
the computation can be altered to have no conditional subtraction and, additionally, if
one input, e.g. b, is constant the multiplication with R can be pre-computed. This saves
one multiplication compared to the Montgomery algorithm in cost of increased memory
requirements when storing the precomputed value. The trick of transforming only one
input also applies for Plantard and for an NTT computation is preferably applied to the
twiddle factors.

2.6. OpenTitan

The OpenTitan project represents a pioneering initiative, stewarded by lowRISC, in the
realm of open-source hardware with a primary focus on the design and implementation
of a transparent, ven, and high-quality silicon root of trust (RoT) ecosystem. Verifiable
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Algorithm 7: Plantard multiplication [19].
Input :a,b€10,9],9< %, ¢ = 1+2\/§, R=g"' mod 2%
Output:r = ab(—272%) mod gand r € [0,4]
d
1r= [(H‘ZbR]zd} + 1) ‘1}

2 returnr

and robust RoT systems are a critical component in modern computing systems respon-
sible for ensuring the integrity and confidentiality of sensitive operations which includes
essential functions such as secure boot, cryptographic key management, and protection
of sensitive data. OpenTitan’s open-source approach ensures that its design can be
independently inspected and audited leading to security through transparency [22].

The OpenTitan project provides not only complete solutions like the standalone micro-
controller EarlGrey or an integrated execution environment Darjeeling but it also bundles
a variety of hardware IPs. These blocks cover the range from cryptographic operations
like Advanced Encryption Standard (AES) or Keccak computations, secure random num-
ber generators, and a big-number co-processor OTBN designed to accelerate asymmetric
cryptography like RSA or elliptic curve cryptography [22]. The main processor of the
EarlGrey chip is the Ibex core, an open-source 32-bit RISC-V implementing the Integer (1),
Integer Multiplication-Division (M), Compressed (C) and Bit Manipulation (B) instruc-
tion sets. However, currently used cryptographic algorithms like RSA are often based
upon big numbers and the Ibex core with its 32-bit architecture is rather inefficient in
executing these arithmetic operations. To improve the execution performance of these
algorithms, the OpenTitan project features a dedicated security hardened big number
core named OpenTitan Big-Number Accelerator (OTBN). This allows the Ibex core to
offload computations to improve the overall runtime.

2.6.1. OpenTitan Big-Number Accelerator

The OTBN is a self-contained co-processor specialized for executing security-sensitive
asymmetric cryptography code where big numbers are prevalent. Such big-number
arithmetic operations are supported by 256-bit wide registers and a 256-bit data path
which can be operated on with specialized instructions. To reduce the possible data
leakage the control flow is isolated with separate 32-bit registers and data path [23].

In the OpenTitan context, the main processor can offload a computation to the OTBN
by writing the desired application and data into OTBN’s instruction and data memory,
respectively. It then can start the execution on the OTBN and can retrieve the results
afterward by reading from the data memory. During the execution, the OTBN cannot be
interrupted except if it encounters an error [23].

The OTBN design is kept simplistic to reduce the attack surface and includes many
security measures against side-channel analysis (SCA) and fault injection (FI) attacks.
For example, all branches and conditional jumps execute in constant time and there is no
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data caching. The instruction and data memory are protected by scrambling the content
and most of the data path implements integrity protection codes which can detect at
least three bits per 32-bit word. On RTL level, register blanking is applied which is
described in more detail in Section 2.6.2 [23].

The following sections summarize and highlight technical details which are relevant
to this work. A complete documentation can be found in [23].

Architecture

The OTBN is based on the Harvard architecture and is built around a 32-bit wide
instruction (8 KiB) and a 256-bit wide data memory (4KiB). Figure 2.3 depicts the
hardware block level architecture where two data paths (32-bit and 256-bit) are visible.
The purple part is the control flow which is based on 32 32-bit registers named GPR
(general purpose register) and the computations are implemented in the arithmetic
logic unit (ALU) named Base ALU. The green part is the 256-bit wide data path based
on 32 256-bit registers named WDR (wide data registers) which are fed into the two
special ALU modules Bignum ALU (BN ALU) and Bignum MAC (BN MAC) (multiply
and accumulate) to compute big-number arithmetics. In addition to the GPRs and
WDRs, there exist so called CSRs (control and status register) and WSRs (wide special
purpose register) which can be accessed by both data paths. The BN ALU implements
basic arithmetic functions like addition, shifting, and logic operations (AND, XOR,
etc.) as well as specialized pseudo-modulo instructions (see instruction set description
below). To implement these pseudo-modulo instructions the BN ALU contains the MOD
WSR, which is used to store the modulus value, and two CSRs storing the arithmetic
flags. Multiplication is handled in the BN MAC which contains a 64-bit multiplier.
A 256-bit multiplication therefore must be executed using the schoolbook algorithm
and accumulating the partial products. The accumulation is enabled by the ACC WSR
inside the BN MAC. A third WSR is in the interface to the entropy distribution network
(EDN) which provides the OTBN with either true random values or values from a
XoShiR0256++ PRNG (pseudo random number generator).

Due to security hardness, the instructions for both data paths are designed as single
cycle execution and the instruction pipeline is thus kept very simplistic and consists
only of an instruction fetch and a combined decode-execute stage. The controller is
responsible for steering the pipeline and coordinating the different modules. To improve
the performance the OTBN prefetches instructions but never speculatively to enforce
constant time execution.

Instruction set

The OTBN features two different instruction sets, one for each data path. The base
instruction set operates on the 32-bit path and is similar to the RISC-V RV32[ instruction
set. It includes a hardware loop instruction and is primarly used to manage the control
flow of an application and its hardware implementation is not security hardened. The
big-number instruction set operates on the WDRs and does not include any control flow
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Figure 2.3.: The OTBN architecture at hardware block level [23].

instructions, but its implementation includes many security hardening features. Note,
that the big-number instructions do not support signed numbers natively as there is no
sign extension capability. As such, the primary use lies in computations with unsigned
integers. This instruction set contains some rather uncommon instructions specifically
designed for cryptographic workloads which are explained in the following. Also, note
that there are no SIMD instructions available. For a complete description see [23].

¢ bn.addm: The "pseudo-modulo” addition sums two WDRs and if the sum is greater
than the value in the MOD WSR then MOD is subtracted before writing it back to
the destination WDR.

® bn.subm: Same as bn.addm but with subtraction and MOD is added if the sum is
less than zero.

® bn.mulgacc[.so, .wo]: Multiplies two quarter WDRs (selectable 64-bit part of a
WDR) and accumulates the product in the ACC WSR. The product can be shifted
prior to the accumulation. Optionally the ACC WSR can be zeroed. There exists
also the variants bn.mulqacc.wo and bn.mulqacc.so which write back the full (.wo)
or half (.so) final value of ACC into a destination WDR.

® bn.rshi: Concatenates two WDRs and then right shifts the 512-bit value. The
result is truncated to 256 bits and written back into a destination WDR.
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Instruction set simulator and register transfer level (RTL) simulation

For development and testing there exists a cycle accurate OTBN Python simulator and
a complete Verilator model for the RTL implementation. These two simulations are
used to check the RTL implementation by running them in parallel (co-simulation) and
comparing their execution traces and register updates. The Python simulator acts as
golden model and can report also statistics such as cycle count, stalls, and a histogram
of used instructions and function calls. In this work, the simulator is used to check parts
of the RTL implementation and also to perform software benchmarks to analyze the
design changes.

2.6.2. Register blanking

Security is essential for the OTBN, and thus, the implementation contains many security
hardening features. Besides the already mentioned mitigations like memory scrambling,
the data path integrity checks, no caches, no branch prediction, and some others (see [23]),
the main feature of the microarchitecture implementation is register blanking. Register
blanking forces data and control paths that are unused by the current instruction to
zero to reduce the power signature generated by secret data bits. In the following, the
concept as it is implemented in the OTBN is explained on behalf of the register file of
the Ibex core as is covered in [24]. The Ibex pipeline and register file are very similar to
the OTBN and the explanation can be directly related.

A register file in a simple processor like OTBN or Ibex is a great source of crypto-
graphic leakage if no blanking mechanism would be implemented as explained in [24].
The left part of Figure 2.4 shows the Ibex register file read and write ports without
blanking mechanisms. To read a register, a MUX tree selects the desired register which
is controlled with 1-bit signals representing the register address. According to [24] this
implementation however raises the following problems:

¢ Switching wires in MUX tree: When reading registers in consecutive cycles the
wire between two MUX levels can change its value. For example, reading the
register x3 in the first cycle and x4 in the second will change the 5th bit of the
address signals. The wire between the MUX of x1 and x2 and the L1 MUX will
change from the data in x1 to x2. If x1 and x2 contain parts of a secret this switching
generates power leakage which can be used to reconstruct the content of x1 and
X2.

¢ Glitchy address signals: When decoding a register read or write instruction the
address signals may glitch for a short amount of time. This glitching results in the
same transition of data as explained in the previous point.

Solving these problems in software is difficult or even impossible depending on the
exact hardware implementation. As a solution, the authors in [24] propose a hardware
gating mechanism as shown in the right of Figure 2.4. The MUX structure is replaced by
AND gates for each register which are controlled by a onehot signal. The desired register
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Figure 2.4.: Left: The original register file of the Ibex core. A multiplexer tree is used

to read registers based on the 5-bit read address. Writing is done via a
multiplexer, controlled by a 1-bit write-enable signal, which is derived from
the write address.
Right: Secured register file. The register output is additionally gated and the
multiplexer tree is replaced by a tree of OR gates. The writing mechanism
remains unchanged, except that it is extended by an additional AND gate
for the write data. From [24], modified.

value is then fed through a cascade of OR gates to the read port. With this structure,
hereinafter referred to as a onehot MUX, at most one bit is set due to the onehot control
signal and therefore at most one register is read. This solves the first problem but the
glitching would still occur as the naive implementation generates the MUX control
signals in the decode-execute stage of the pipeline. To solve this problem, the onehot
control signal is flopped such that it is already stable at the beginning of the clock cycle
/ when the instruction enters the decode-execute stage which in turn requires that the
control signals are generated in the preceding pipeline stage.

The described problem does not only apply to the register file. It also applies to any
data path that is unused by the current instruction. For example, for an add instruction
the unused shifter inside the OTBN’s BN ALU may not receive the values of the source
registers as the shifting logic then would generate leakage. To prevent this leakage all
unused data paths must be tied to zero which can be implemented by adding a so called
blanker into the path. A blanker is similar to the register gating mechanism but only
includes the ANDing part and no multiplexing. Each bit of the to be blanked path is
connected to a 2-input AND gate where the second input is a predecoded control signal.
Now the data can only propagate if the control signal is set and otherwise the path is
blanked, i.e., no data can propagate and no leakage is generated [24].

For the OTBN only the WDR register file, WSRs, the BN ALU, and BN MAC modules
implement such blanking mitigations. The base registers and ALU is not protected.
For additional redundancy against FI attacks, the decoder generates the control signals
for the register files and blankers in parallel to the predecoder. These signals are then
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Figure 2.5.: Simplified pipeline of OTBN to highlight the blanking implementation. The
predecoded signals generated in the predecoder are flopped between the
instruction fetch and decode-execute stage. The register file uses onehot
controlled AND-OR structures and the lowercase ‘b” represents blankers on

the data paths.

compared to the predecoded values and a fatal error is raised if these do not match [23].
With the predecoding, the OTBN pipeline can be thought of as depicted in Figure 2.5.
It is a drastic simplification but captures the relevant parts. Namely, the predecoded
control signals are flopped between the instruction fetch and decode-execute stage and
the WDR register file is accessed with a onehot structure. The lowercase ‘b” represents
blankers in the unused data paths which there are many more inside the BN ALU and

BN MAC module.
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Chapter

Baseline architecture

This chapter presents different implementation strategies for PQC schemes found in
literature and discusses their advantages and disadvantages as well as their applicability
to OTBN. Finally, an ISA extension is proposed which serves as a baseline for further
optimizations. The implementation thereof is documented in Chapter 4.

3.1. Literature review

All of the reviewed literature [5, 6, 7, 8, 9, 10, 11, 12] can be assigned to one of the
following strategies:

¢ Dataflow implementation: Proposals of implementations of ML-DSA and similar
algorithms in a streaming and pipelined manner. These designs target field-
programmable gate array (FPGA) or application-specific integrated circuit (ASIC)
solutions and are very specialized for one cryptographic algorithm. This approach
does not fit well into the OTBN context as a generic extension is targeted. However,
some optimization tricks may be useful.

¢ Co-processor: These propose to design a processor similar to OTBN. Most of them
are however very specialized but simpler processors. These may contain ideas for
new instructions.

¢ ISA extension: Proposals of new instructions for platforms RISC-V like processors
or directly the OTBN. These extensions range from very generic SIMD to highly
specialized butterfly instructions. These are the most interesting strategies.

In the following, each work is summarized and its key points are highlighted. The
reviews are ordered in increasing applicability starting with full dataflow implementa-
tions and ending with the ISA extension proposals. A more comprehensive overview of
the literature including performance and area metrics can be found in [25].!

1See artifacts-for- report/literature-research.ods
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A Compact and High-Performance Hardware Architecture for CRYSTALS
Dilithium [5]

This work proposes a fully specialized, segmented, and pipelined dataflow for FPGAs.
Key functions of ML-DSA are implemented in modules that are pipelined to reduce
intermediate result storage requirements. It includes a special NTT module which is
pipelined and based on 4 parallel butterfly units which allows to compute 8 butterflies in
a time sliced fashion. The rejection sampling module computes the matrix A on-the-fly
to reduce the memory footprint. Due to its dataflow architecture and high specialization,
the proposed ideas are not directly applicable to the OTBIN.

Polynomial Multiplication for Post-Quantum Cryptography [6]

This PhD thesis provides a solid introduction to modular reduction and multiplication
algorithms and then expands on different NTT types (on NTT-friendly and unfriendly
rings) and shows how to implement these in the most efficient way on Cortex-M4 and M3
processors. These processors are all 32-bit based and many proposed implementations
make use of the inherited wrap around. The described techniques are therefore only of
partial use.

Lightweight Hardware Accelerator for Post-Quantum Digital Signature
CRYSTALS-Dilithium [7]

Describes a hardware accelerator for ML-DSA for either standalone use or integration
as a co-processor. Internally it contains modules each implementing a subfunction of
ML-DSA which are controlled by a global finite state machine (FSM). These modules all
communicate through a central main memory to compute the ML-DSA in a streamed
and pipelined manner. Modular reduction is performed by converting the reduction into
a series of 2 to 12-bit additions, bit shiftings, and one multiplication. This is possible due
to the special property of the ML-DSA modulus which can be split recursively. Similar
to the previously discussed works this is a fully specialized accelerator and therefore
is of less interest. The proposed modulo reduction module might be of interest for a
possible optimization but probably results in a very long critical path.

A Highly-efficient Lattice-based Post-Quantum Cryptography Processor for IoT
Applications [9]

This work describes a custom processor with SIMD registers, a NTT ALU module called
PALU and a custom instruction set. It is based on the CV32E40P processor (RISC-V,
in-order 4 stage pipeline) and has 5 special SIMD capable registers of 16 64-bit values
each where the data elements are interpreted as 32-bit values. Next to the specialized
NTT ALU instructions, the processors feature specialized instructions for sampling of
centered binomial distributions, rejection sampling, and Keccak computation (xor and
rotate combinations) which operate on the SIMD registers. The NTT focused PALU
consists of 8 processing units each of these features a multiplier, two adders and modular
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reduction circuitry perfectly matching the butterfly operation. It includes additional
functionality to perform vector element shuffling to optimize the data alignment inside
the SIMD registers. This enables efficient NTT layer computations as the stride between
inputs to the butterfly operation shrinks with each layer. The implementation of ML-
DSA is reported to result in about 40 KiB of code and requires up to 64 KiB for the highest
level of ML-DSA. Despite its promising performance, the proposed ideas are actually
only of partial use because the PALU and other instructions are very specific to ML-DSA
and some of the functionality can be solved using the OpenTitan KMAC IP. However,
an NTT module may be of interest.

ISA Extensions for Finite Field Arithmetic - Accelerating Kyber and NewHope on
RISC-V [8]

The main contribution is a RISC-V ISA extension proposal targeting two other PQC
schemes namely Kyber [26] (standardized in 2024 as ML-KEM [27]) and NewHope [28].
ML-DSA is not directly considered but is very similar in computational aspects. The
proposed instructions provide arithmetic operations (addition, subtraction, multiplica-
tion, and reduction) directly on finite fields that operate on the 32-bit registers, i.e. these
are Single Instruction Single Data (SISD) instructions. The finite field reduction is based
upon the Barrett reduction [29] and is implemented in the memory and writeback stage
of the RISC-V pipeline. In addition to the ISA extension, an on-the-fly NTT twiddle
factor computation is explained. This technique may be of interest if the instruction
memory footprint of an application must be reduced but comes with a high performance
penalty. Regarding OTBN, the described ideas are less applicable because the execution
of the instructions is spread over the pipeline stages whereas the OTBN does only have
a combined decode-execution stage. In addition, only the OTBN’s 256-bit data path
includes security features (extending the 32-bit path is infeasible due to the inferred
costs in area and verification) and possible SIMD opportunities cannot be exploited with
the presented idea.

PQ.V.ALU.E: Post-Quantum RISC-V Custom ALU Extensions on Dilithium and
Kyber [10]

This work presents finite field operations for a RISC-V core similar to [8] which are
implemented in a custom ALU module. Its difference is that all instructions are imple-
mented in the execution pipeline stage and features a single cycle butterfly operation.
The proposed butterfly implementation could easily be adapted to support SIMD func-
tionality operating on OTBN’s WDR. However, to support single cycle execution, three
read and two write ports to the Bignum register file are required (reading two inputs and
a twiddle factor, writing back the two results). The current OTBN only features two read
and one write port. Extending the register file seems infeasible due to the area increase
driven by extending the register file and the additionally required blanking functionality,
see Section 2.6.2. On the other hand, the gained speedup is estimated to be around a
factor of 3 because a butterfly requires at least 3 instructions (one multiplication, one
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addition and one subtraction).

Towards ML-KEM & ML-DSA on OpenTitan [11]

This work describes an implementation of ML-DSA on the OTBN and is based on a
master thesis [12]. First, a native implementation using the default OTBN is described
and profiled. As explained in Chapter 2, this work also identifies the bottlenecks as
Keccak computation and the NTT. To improve the performance, the authors present the
following two optimizations. For the Keccak computation, they propose to interface
the KMAC IP block whereas for the NTT a simple and generic SIMD ISA extension
is proposed. These new instructions operate on the WDRs and include vectorized el-
ement wise addition, subtraction, multiplication, bit shifting, and element shuffling.
All arithmetic instructions come also with a modulo variant where addition and sub-
traction is only a pseudo reduction similar to the existing bn.add / bn. sub instructions
(see Section 2.6.1) and the multiplication is a direct hardware implementation of the
Montgomery multiplication. In regard of the implementation, the approach is to reuse
as much of the existing OTBN resources to keep the area overhead to a minimum.
Reusing resources like adders for all instructions is possible with minor modifications
to the existing logic except for the multiplication. The solution for multiplication is
more involved and two approaches are described. The simpler to implement approach
describes a new ALU module that only handles the vectorized (modulo) multiplication
and co-exists with the Bignum ALU and Bignum MAC modules. Whilst this approach
requires only simple control logic and provides single cycle multiplications the required
area is huge as it doubles the OTBN area as the new module includes three multipliers.
Alternatively, it is proposed to reuse the existing multiplier of the Bignum MAC mod-
ule and convert the multiplication to a multi-cycle instruction. This way only smaller
additions to the Bignum MAC module are required and the area overhead reduces to
about 12% of the OTBN, but the control logic becomes more sophisticated. Similar to [9]
the ML-DSA results in a code size of approximately 32 KiB and requires up to 124 KiB of
DMEM. Overall, this work proposes a reasonable ISA extension that can fulfill the initial
requirements of a generic and relatively lightweight extension.

3.2. ISA extension proposal

As discussed in the previous section, most of the reviewed literature focuses on either
a very specific solution or suggests a dataflow implementation. Others describe ISA
extensions which are legitimate but target an instruction pipeline with more stages
than OTBN’s pipeline or are only useful for a 32-bit register architecture. The work
of [9] describes an interesting approach with its 5 SIMD registers and specialized PALU
module. However, the suggested implementation with 8 separate cores (including 8
multipliers) probably results in a similar infeasible area increase as the single cycle
approach described in [11]. Lastly, the idea in [11] matches nicely with the project’s goals
as it provides instructions of generic character. The less area intensive but less performant
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approach of reusing the existing multiplier presents a suitable area to performance
tradeoff as achieving the best possible performance is not the goal of this work.

In regard to instruction memory and data memory, all processor related papers report
high requirements with up to 124 KiB of data memory and 32 KiB of instruction memory
for the highest ML-DSA security level. These values certainly exceed the current memory
size of 8 KiB and 4 KiB for instructions and data, respectively. However, this problem
is out of scope for this work as there are plenty of possible solutions. The most basic
solution would be to increase the memory sizes but other ideas like using other memory
regions already present in an OpenTitan system or only offloading parts of the ML-DSA
like the NTT to the OTBN are also possible approaches. Also, the solution depends on
the capabilities of refactoring the implementation by making use of the new extension
and thus should be investigated in a follow up work.

Given the rationale just elaborated, the ISA extension with the multiplier reuse strat-
egy described in [11] is chosen as a baseline design with extended SIMD element length
support. This design introduces five new types of instruction to the OTBN. All these
instructions operate on the WDRs and interpret the 256-bits as a vector of unsigned
elements of configurable bit widths. In the following, these instructions are described in
more detail and the element length i.e., bit width, is specified with the parameter <elen>
which either can be .2Q for 128-bit elements, .4D for 64-bit and .8S or .16H represent-
ing 32-bits or 16-bits elements, respectively. The only exception is the multiplication
instruction bn.mulv(m) which only supports the 32-bit or 16-bit (.8S or .16H) variants
due to constraints given by reusing the existing multiplier (see explanation given in
Section 4.2.4). Arithmetic operations also include a variant where a (pseudo) modulo
reduction is performed. These variants are differentiated by adding a m as suffix. In
this case, the modulus value is read from the MOD WSR similar to the already existing
bn.addm and bn. subm instructions expect it (see Section 2.6.1).

® bn.addv(m).<elen> <wdr>, <wrsl>, <wrs2>: Add the vector elements in WDRs
<wrs1>and <wrs2> element wise and store the result in the WDR <wdr>. The results
are truncated in case of an overflow. If the modulo variant is selected a pseudo
reduction is performed, meaning if an individual result is equal to or larger than
MOD, MOD is subtracted from it.

® bn.subv(m).<elen> <wdr>, <wrsl>, <wrs2>: Subtractthe vector elementsin WDR
register <wrs2> from <wrs1> element wise and store the result in the WDR <wdr>.
The results are truncated to the element length. If the modulo variant is selected a
pseudo reduction is performed meaning if an individual result is negative, MOD
is added to it.

® bn.mulv(m)(1).<elen> <wdr>, <wrsl>, <wrs2>[, <lane>]: Multiply elements
in WDRs <wrs1> and <wrs2> element wise and store the result in the WDR <wdr>.
The results are truncated to the element length. This instruction supports only ele-
ment lengths of type .8S or . 16H. The suffix 1 specifies a lane wise operation where
all elements of <wrs1> are multiplied with a fixed element in <wrs2> at the index
specified by <lane>. This applies to both the regular and modulo multiplication. If
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WRS1 3 2 | 1 0 | 3 2 1 0
| | o~ N
WRD | 2 | 2 | 0 | 0 | | 1

—

[ 2 [+ [0 ]

/
/

WR82|3|2|1|0||

Figure 3.1.: An illustration of the proposed instructions bn.trnl and bn. trn2 for vectors
with four elements.
Left: The bn.trnl places even-indexed vector elements from <wrsl> into
even-indexed elements of <wrd> and even-indexed vector elements from
<wrs2> are placed into odd-indexed elements of <wrd>.
Right: For bn.trn2 odd-indexed vector elements from <wrs1> are placed
into even-indexed elements of <wrd> and odd-indexed vector elements from
<wrs2> are placed into odd-indexed elements of <wrd>

the modulo variant is selected instead of a regular multiplication a Montgomery
multiplication is performed for all elements. This requires the modulus value
and the corresponding element length’s Montgomery constant to be placed in
the MOD WSR. The input operands must be transformed into the Montgomery
representation accordingly before executing this instruction. Note, that due to the
chosen strategy of reusing the existing multiplier, this instruction executes over
multiple cycles. See Section 2.5 and Section 4.2.4 for a detailed explanation.

® bn.trnl/bn.trn2.<elen> <wdr>, <wrsl>, <wrs2>: Interleaves the vectorsin <wrsl>
and <wrs2> as illustrated in Figure 3.1. The bn.trnl places even-indexed vector
elements from <wrs1> into even-indexed elements of <wrd> and even-indexed
vector elements from <wrs2> are placed into odd-indexed elements of <wrd>. For
bn.trn2 it is vice versa. Odd-indexed vector elements from wrs1 are placed into
even-indexed elements of wrd and odd-indexed vector elements from wrs2 are
placed into odd-indexed elements of wrd.

® bn.shv.<elen> <wdr>, <wsr> <shift_type> <shift_bits>: Logically shifts each
element of vector <wrs> by <shift_bits> bits in <shift_type> direction. The op-
tions for <shift_type> are << or >> for left or right shift, respectively.

The instruction encoding is presented in Figure 3.2. To avoid any clash with already
existing instructions all new instructions are placed in the opcode group 1011011,
(bits 0 to 6) which corresponds to the RISC-V opcode group custom-2. For the bn.shv
the parameter <shift_type> is abbreviated as ST and <shift_bits> is split over SB1
and SBO. The encoding is chosen to allow certain future expansion. For example,
the bn.addv(m) and bn.subv(m) contain a bit to select a vectorized flag group (FG)
such that flag functionality similar to the non vectorized instructions is possible. The
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Instruction Bit

31[30[29]28 2726 [25[24[23]22]21]20 [19]18]17[16[15[1a[13[12[11][10] 9 [8 [ 7 [6 [5 [4 [3]2[1 0
bn.addvm)  [FG| 0 [ELEN [M [0 [x WRS2 WRS1 olo]o WRD 1ol [1]o]1]4
bnsubvim)  |FG| 1 [ELEN [M] o0 [ x WRS2 WRS1 olo]o WRD 1ol ]1]of1]4
bn.addve FGlo [ELen [m[ 1] x WRS2 WRS1 olo]o WRD 1{of1[1]of1]4
bn.subvc Fe| 1 [ELen [m] 1 [x WRS2 WRS1 olo]o WRD 1ol [1]of1]H4
bn.addvi FG|o [ELEN [ MM1 WRS IMMO ARE WRD 1{of1[1]of1]4
bn.subvi FG| 1 [ELEN | MMt WRS IMMO ARE WRD 1lol1[1]of1]H4
reserved | | [ T T 1 [ T T T Toltlol T T T T Talola]a]o]1]n
bn.mulv(l) LANE  |ELEN[L WRS2 WRS1 ol1]4 WRD o1 [1]of1]1
bn.mulvm(l) LANE  |ELEN[L WRS2 WRS1 1]o]o WRD 1ol 11 o4
bn.trn1 x [ o [ELEN [x [ x [x WRS2 WRS1 HE WRD 1ol [1]o]1]4
bn.trn2 x |1 ]Een [ x [ x [ x WRS2 WRS1 1101 WRD 1ol o4
reserved [T T 1 [T T T T Tiltdol TTT T Talolala]ol1]n
bn.shv x [sT]ELEN [ x | sB1 WRS SBO [ERE WRD HREEDEE

Figure 3.2.: Encoding of proposed instructions. The gray marked instructions are not

proposed but space is reserved in the encoding for future expansion. An ‘x
represents a ‘don’t care’ value.

corresponding vectorized add or subtract with carry instructions as well as add or
subtract an immediate are also reserved and highlighted grey in Figure 3.2.

3.3. Benefits of proposed instructions

Introducing the new instructions leads to great benefits when computing functions like
the butterfly on the OTBN. An implementation for 32-bit values using the default OTBN
instructions as discussed in [11] and replicated in Listing 3.1 is quite cumbersome. In
Listing 3.1, eight butterfly coefficients and the required twiddle factor are already loaded
into the WDRs, hereinafter named as coeffsa, coeffsb and twiddle. The WDR consts
contains the required Plantard constants and other masking helpers. To compute the
butterfly, first, each 32-bit value must be extracted from a WDR, then a Plantard multipli-
cation must be implemented step by step followed by the actual butterfly computation.
Finally, the result must be stored back into the WDR at the correct location. This requires
10 instructions to compute one butterfly, which must be looped 8 times to fully process a
WDR, resulting in an execution time of 80 cycles (each instruction is single cycle).
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/* coeffsa and coeffsb contain 8 32-bit coefficients.
* consts contains the Plantard constants and masking helpers. x/

/* Mask out coefficients from buffer x/
bn.and coeffa, coeffsa, consts >> 192
6| bn.and coeffb, coeffsb, consts >> 192

AR W N =

s| /* Plantard multiplication: Twiddle * coeffb */
9| bn.mulgacc.wo.z coeffb, coeffb.0, twiddle.0, 192 /x (coeffb*R) mod 2"°2d =/

0| bn.add coeffb, consts, coeffb >> 160 /* +1 x/
11| bn.mulgacc.wo.z coeffb, coeffb.l, consts.2, 0 /* *xq */
12| bn.rshi wtmp, consts, coeffb >> 32  /x >> d */

13| /* Butterfly x/
14| bn.subm coeffb, coeffa, wtmp
15| bn.addm coeffa, coeffa, wtmp

17| /* Shift results back to buffer and shift out used coefficients x/
18| bn.rshi coeffsa, coeffa, coeffsa >> 32
19| bn.rshi coeffsb, coeffb, coeffsb >> 32

Listing 3.1: Butterfly implementation using the default OTBN instructions.

Using the new instructions, this implementation can be easily vectorized and simpli-
fied as shown in Listing 3.2. The unwrapping and storing of the coefficients back in
the WDRs is no longer required as all 8 butterflies can be computed at once. Also, the
Plantard multiplication is replaced with the built in Montgomery multiplication which
frees the consts WDR for other purposes. In total, the computation of 8 butterflies now
takes only 3 instructions. However, the Montgomery multiplication is implemented
as a multi-cycle operation and requires 12 cycles (see Section 4.2.4). This results in
an execution time of 14 cycles for processing 8 butterflies improving the performance

theoretically by 5.7x.

/* coeffsa and coeffsb contain 8 32-bit coefficients.
* twiddle contains 8 twiddle factors. */
bn.mulvml.8S wtmp, coeffsb, twiddle, 0O
bn.subvm.8S coeffsb, coeffsa, wtmp

bn.addvm.8S coeffsa, coeffsa, wtmp

Listing 3.2: Butterfly implementation using the proposed vectorized instructions.

The bn.trnl and bn.trn2 are useful for rearranging the order of coefficients in the
WDRs which is required when the stride between the butterfly coefficients becomes less
than 8 i.e., the required coefficients are loaded into the same WDR from the memory. A

tull display of the benefits and the achieved speed ups can be found in Chapter 5.
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Baseline implementation

This chapter describes how the proposed instructions are implemented and integrated
into the OTBN. It first discusses architectural decisions and the actual RTL implemen-
tation of the circuitry computing the instructions. At last, the changes to the OTBN
pipeline to integrate the adapted ALU modules and the chosen verification strategy are
explained.

4.1. Architectural decisions

There are multiple possibilities for how to integrate the proposed instructions into the
OTBN design. However, as already discussed in Chapter 3 the main focus lies on
creating an area efficient implementation that requires to reuse existing hardware. From
an architectural viewpoint, the task is now to decide which instruction can reuse which
existing hardware most efficiently. The chosen decisions are described below, whereas
the implementation is documented in Section 4.2.

As introduced in Section 2.6.1, the OTBN features two modules for big number
computations namely the BN ALU and BN MAC. The BN ALU main components are
two 256-bit adders, the MOD WDR, and circuitry for logic operations. These components
are ideal for realizing the instructions bn.addv(m), bn.subv(m), bn.trn1/2 and bn.shv
because these instructions are of a similar kind as the already implemented instructions
and the main change required is to vectorize the two adders.

To realize the bn.mulv(m) (1) instructions the 64-bit multiplier from the BN MAC is
reused as elaborated in Section 3.2 and [11]. However, the integration of bn.mulv(m) (1)
into the BN MAC is challenging as the OTBN pipeline technically only supports single
cycle instructions and the proposed instruction implements a multi-cycle Montgomery
algorithm in hardware. To enable a multi-cycle computation a stall control logic must be
implemented inside the BN MAC. This logic stalls the main pipeline and controls the
data path inside the BN MAC to compute the Montgomery multiplication. In addition,
the chosen Montgomery computation approach requires storing temporary values
which requires two additional registers next to the existing ACC WSR. Nonetheless,
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integrating the bn.mulv(m) (1) into the BN MAC presents still the best tradeoff between
area, performance, and complexity.

4.2. Design description

This section describes the actual RTL implementation of the proposed instructions and
all required security measures to harden the implementation. First, it is explained how
the existing 256-bit adders and 64-bit multiplier are adapted to support vectorized
computations which resulted in the creation of two new modules, a configurable vector-
ized adder and a vectorized multiplier. Finally, the actual implementation of the new
instructions based on these new building blocks is presented.

4.2.1. Vectorized adder

To vectorize a 256-bit adder, the main trick is based upon the fact that a 256-bit addition
can be split into 16 adders each computing 16 bits and propagating the carry accordingly.
By controlling whether a carry bit is propagated or not, it is possible to create multiple
adders of different bit widths. Figure 4.1 shows the designed vectorized adder which
supports vectors with 6-bit, 32-bit, 64-bit, 128-bit or 256-bit elements. It is constructed by
chaining 16 17-bit adders where the lowest bit is used for the incoming carry. Between
each adder, a multiplexer (MUX) selects either the carry out from the previous adder or
an external carry. For the original 256-bit addition all carries are propagated to the next
adder. If the input WDRs represent 16-bit vectors then each 17-bit adder computes an
independent addition based on the provided carries. In the case of 32-bit vectors, two
adders are connected resulting in eight 32-bit additions. This approach easily allows to
compute also 64-bit and 128-bit additions by correctly setting the MUX control signals.
Subtraction is also supported by using the trick that a — b = a + b + 1 and setting the
input carries accordingly.

In regard to leakage, this design is secure as long as the MUX control signals are
predecoded. Imagine the two 256-bit inputs representing eight 32-bit values each which
are shares of a secret. If the MUX control signals were unstable, e.g., set to 64-bit, then
the 32-bit values would be interpreted as 64-bit values which would result in leakage
because secret shares were mixed.

4.2.2. Vectorized multiplier

The designed vectorized multiplier can compute either one 64-bit, two 32-bit or four
16-bit multiplications at once. This is possible by splitting a 64-bit multiplication into its
16-bit partial products and then shift and sum these according to the selected element
width. Consider a 64-bit multiplication of the operands 2 and b and split them into
four 16-bit chunks like a = [a3,a;,a1,a0] and b = [bs, by, by, bp]. The multiplication can be
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b[255:240] {a[47:32], 1} b[47:32] {a[31:16], 1} b[31:16] {a[15:0], 1} {b[15:0], cin%}

{a[255:240], 1}

Adder 15 Adder 2 Adder 1 Adder 0
[16:1] [16:1] [16:1] [16:1]
coutt®  s[255:240] r cout® s[47:32] coutt s[31:16] cout® S[15:0]

Figure 4.1.: A vectorized 256-bit adder supporting vectors with 16-bit, 32-bit, 64-bit,
128-bit or 256-bits elements. It is constructed by chaining 16 17-bit adders.
The carry is either an input or originate from the result of the lower adder
depending on the vector element length.

rewritten with R = 21¢ as in Equation (4.1).

a-b= aobg)

(
+R -(a0b1 + albo)

—|—R2-(El0b2 + a1b1 + azbo)

+R?-(agbs + a1y + asby + asby)

+R*(a1bs + azby + asby)

+R5'(ﬂ2l73 + 6l3b2)

+R®-(a3bs3) (4.1)

Splitting the partial product computation from the summation allows to compute vec-
torized 16-bit or 32-bit multiplications. In the case of 16-bit multiplications, we simply
pick the four partial products a;b; as results. For 32-bit elements, the two results ¢y and
c1 can be computed with Equation (4.2). For a 64-bit multiplication, the 32-bit results
can directly be used to compute the 64-bit result by summing up the remaining partial

products.

aobo)
apby + arbo)
a1by) (4.2)
c1 = {u3,[l2} . {bg,bz} = llzbz)
+R -(asbz + ﬂ3b2)
+R?(azb3) (4.3)

co={ai,a0} - {b1,bo} =
+R

(
o
(

(
(
(

When implementing this in RTL, caution has to be taken regarding leakage. Depend-
ing on the configured element length, not all 16-bit partial products may be computed.
For example, if the element length is set to 16-bits, only the a;b; (i is the same for a and
b) partial products must be computed. Computing any other partial product generates
leakage because this operation then entangles two 16-bit shares which are not supposed
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Figure 4.2.: For the partial product generation, inputs to the unused partial product
multipliers (marked red) must be blanked as otherwise leakage is generated.

to be combined. The same applies to 32-bit elements and only for the 64-bit case, all
partial products can be computed. This selective partial product computation can be
achieved by blanking the corresponding 16-bit shares before the multiplier circuit. A
simplified case is represented in Figure 4.2 which presents the partial product computa-
tion of a vectorized multiplier. This multiplier is capable of computing C = A - B and can
interpret A and B as either two full word values or as vectors with two elements each.
For the first interpretation, all partial products must be computed and then summed up
with a logic not shown. This is equivalent to the 64-bit case. For the second case, where
the inputs are interpreted as vectors, only the two partial products agbg and a;b; may be
computed. The two multipliers marked red may not receive the values as this would
mix up, for example, ag with b; and therefore generate leakage. As a consequence, the
red marked paths must be blanked in this case.

The second step, summing the partial products, requires also some attention. Fig-
ure 4.3 depicts the summation circuitry. Despite the partial products are only computed
on demand, two blankers are still essential. The first blanker ensures that in the 16-bit
case the partial products a;b; are not propagated into the 32-bit summation (these are
used for both cases) and only follow the 16-bit path. The second blanker handles the
32-bit result forwarding and is only active in the case of a 64-bit multiplication. For the
result selection, a regular MUX is sufficient because one of the 32-bit and 64-bit inputs
either contains the result or is all zero. The 16-bit input can always be propagated into
the MUX as in all three cases the data is already mixed up in the summations anyway.
In addition, the MUX control signal is nonetheless predecoded as it is helpful to reduce
the critical path.

4.2.3. Bignum ALU module

The dataflow of the vectorized BN ALU is depicted in Figure 4.4. It consists of one
vectorized shifter, two vectorized adders (X and Y), a modulo result selector, the MOD
WSR, a modulo value replicator, logic operators for regular 256-bit operands (AND, OR,
XOR, NOT) and a vector transposer. In the following, the implementation of the new
instructions is explained starting with the vectorization of addition and subtraction,
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Operand A Operand B
| |

16-bit Partial Product Generation

b Enable for 32-bit & 64-bit

i

32-bit Summation

. |
Enable for 64-bit

L

Result

64-bit Summation

Figure 4.3.: The partial product summation circuit of the vectorized multiplier requires
two blankers which are depicted with a lowercase ‘b’.

vectorized shifting, vector transposing and concluding with the required blanking miti-
gations. The already existing logic circuitry is not vectorized and, thus no modifications
are made.

Vectorized (pseudo modulo) addition and subtraction

The instructions bn.add and bn.addv as well as their subtraction counterparts are directly
implemented using the adder Y. The second operand B is first passed through the shifter
to support the pre-shifting functionality of bn.add.

For the pseudo modulo variants (bn.addm and bn.addvm as well as the subtraction
variants) adder X computes the initial addition X = A + B and adder Y computes the
pseudo modulo result Y = X — MOD where MOD is the value stored in the MOD WSR.
In the case of a pseudo modulo addition, the result is selected depending on the carry
bits according to the following rules:

¢ If adder X generates a carry:
A 4+ B > MOD (because MOD is 256-bit) — Select Y.

¢ If adder Y generates a carry:
X-MOD=A+B-MOD>=0— A+ B>=MOD — SelectY.
Note, this is only valid if adder X does not generate the carry.

¢ If neither adder generates a carry — Select X.
For the pseudo modulo subtraction, the result is selected based on

e If adder X generates a carry: A — B >=0 — Select X.
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A[255:0] B[255:0]  Cinx[15:0] A[255:0] B[255:0] A[255:0] B[255:0]
1 1 1 1 1 1
b b b b b b
v ¥ v v v ¥
[«—carry_sel shifter_a_en—> . [€—mask [ «—ELEN
Vector Adder X MOD WSR Vector Shifter Vector Transposer
[e—invert_x shift_amount—>| [€— shift_right [e—is_trnl
Cy[15:0] l
X[255:0] _
MOD Replicator [«—ELEN
A[255:0]
n—l mod[255:0] | shifter_res[255:0]
b b
A[255:0]
Cin[15:0] 1
b b
v ¥
[€—carry_sel X
Vector Adder Y Logic
[e—invert_y
Cyl[15:0]
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r
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l l v v
] l«—ELEN
Vectorized MOD result selector
[—is_sub
mod_res[255:0] |

| |
% |

op_res[255:0]

Figure 4.4.: The vectorized BN ALU structure. The two adders X and Y are used to
compute the pseudo modulo reduction. A lowercase ‘b’ represents a blanker.
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Cy[15:0] Cy[15:0] X[255:0] VY[255:0]

Decision[15:0] v |,

Selection stage l[«<—ELEN

v

mod_res[255:0]

Figure 4.5.: The complete modulo result selector circuit. The result selection decision
is computed for each 16-bit chunk independently and the forwarded to the
selection stage.

D15 VY[255:240] X[255:240] D15D14 Y[239:224] X[239:224] D15 D7 D3 D1 Y[31:16] X[31:16] D15D7 D3 D1 DO  Y[15:0]  X[15:0]
10
res_sellS res_sell4 w res_sell \—l—/ res_sel0 w
res[255:240] res[239:224] res[31:16] res[15:0]

Figure 4.6.: The modulo result selection stage. Depending on the element length the
appropriate decision bit D; is forwarded to the result selection MUX for each
16-bit chunk independently.

e Otherwise select Y.

This decision logic is easily extended to vectorized computations by considering the
appropriate carry bits for each vector element individually and replicating the MOD
value for each vector element which is implemented with the MOD value replicator
block.

The result selection described before is implemented in the modulo result selector
module, shown in Figure 4.5, and is split into two stages. The first stage computes a
decision bit indicating which result to take assuming a 16-bit operation was performed,
i.e., the decision is based on the two carry bits from the corresponding 17-bit adders
inside the vectorized adders (see Section 4.2.1). These decision bits are then propagated
into the selection stage (Figure 4.6) which selects for each 16-bit chunk the appropriate
decision bit based on the desired element length. This selected decision bit (res_sel;)
then controls the result selection between X and Y. For example, for a 32-bit pseudo
modulo subtraction, the result bits [15: 0] and [31 : 16] are controlled by the decision bit
D; which is generated by the carries of the 2nd 16-bit chunk (Cx[1], Cy[1]).
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Vectorized shifter

The shifter shown in Figure 4.7 (left) operates on a 512-bit value to implement the already
existing bn. rshi (concatenate and right shift) instruction and is based on a barrel shifter
supporting a right shift up to 256 bits. The lower (256-bit) half of the input and output
can be reversed to allow left shift implementation. There is no concatenate and left shift
instruction so reversing is not required over the full width.

In regular mode (i.e., no concatenation) only the operand B is relevant and the upper
256 bits are set to zero. Vectorizing this shifter can be achieved by adding a simple
masking step after the shift step. Figure 4.7 (right) shows a simplified example of this
masking step. Assume the input is a vector with four elements which should be right
shifted by two bits (i.e., by the shift_amount value). To compute this, the vector is first
shifted equally as a non vectorized shift resulting in a vector where the lowest two bits of
each element are wrongly shifted into the element right to it. These wrong bits (located
where the red marked zeros are in the mask) are then set to zero by ANDing with a
bit-mask for the desired element length. The resulting 256-bit value is a vector where
each element is individually shifted right by two bits. This implementation natively
supports the default 256-bit case by setting all bits of the mask to one.

Vectorized transposer

The vectorized transposer implements the functionality of bn.trnl and bn.trn2 by
directly shuffling the bits for each configurable element length separately and then
selecting the desired result with a onehot MUX to avoid any leakage. For an explanation
of the wiring consult Section 3.2 and Figure 3.1.

Blanking

In regard to blanking, the BN ALU is rather simple. The operands A and B are blanked
before they propagate into a computation circuitry and each blanker is only activated
if the current instruction actually requires the circuitry. The two MUXSs in front of
the adder Y can be regular MUXs with predecoded control signals as their inputs are
already blanked. Inside the modulo result selector the MUX for selecting the decision
bit depending on whether it is an addition or subtraction also only requires a regular
MUX but its control signal is_sub must be predecoded. However, all MUXSs inside the
selection stage must be onehot MUX as otherwise the decision bits over multiple 16-bit
chunks and thus vector elements are combined. Note that adder X is never used in
isolation, it is always combined with adder Y so there is no need for blanking between
adder X and adder Y. For the vectorized shifter regular MUXs with predecoded control
signals are sufficient. The mask theoretically does not have to be predecoded but it still
is to optimize the critical path.
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b0 A[255:0]  B[255:0]

shifter_a_en shift_right Shift vector with 4 Elements right by 2

I I I I I
Input [Lafefafefafafafafafafufa]a]afa]

Only enabled for
BN.RSHI

Shifted >> 2 |o|o|1|1|1|1|1|1|1|1|1|1|1|1|1|1|

shift_amount
shifter_out [511:0] Mask lofo]1[1]o]oz[t[o]o[z1[o]o1]1|

Output |o|0|1|1|o|o|1|1|o|0|1|1|o|0|1|1|

mask

shifter_res[255:0]

Figure 4.7.: Left: The RTL implementation of the vectorized shifter. The shift itself is

always a right shift. Left shifting is achieved by reversing the input and
output.
Right: An example where a vector consisting of four 4-bit elements is shifted
by two bits to the right. First the raw input is shifted to the right. Then a
mask is generated and ANDed to delete the bits which were shifted into the
neighboring vector element.

36



4. Baseline implementation

|
op_a_qw_se ———————————>o0p_res

———————>to flag update
Quad Word 64b

l
M

Quad Word 64b

op_b —b=> Selector

op_a b= Selector =
K .| Half Word
Quad Word S92 "l shifter
Shifter
—>

acc_shift_imm

blanker is used
to reset ACC

shift_acc

op_b_qw_sel

ACC

A

A

Figure 4.8.: The original unmodified BN MAC featuring a 64-bit multiplier, 256-bit adder
and a 256-bit WSR named ACC.

4.2.4. Bignum MAC module

Vectorizing the BN MAC and reusing the existing hardware poses some challenges
due to the complexity of the instructions and the chosen multi-cycle approach. To
better understand the implemented changes this section is split in three parts. First, the
original BN MAC, supporting the bn.mulqacc[.so, .wo] instruction (see Section 2.6.1),
is explained followed by how the Montgomery algorithm (see Algorithm 6) can be
computed using only one multiplier by splitting its execution over multiple cycles.
Lastly, it is described how the elaborated concepts are integrated into the BN MAC to
enable vectorized (Montgomery) multiplications and what problems arise in regard to
security hardening the implementation.

Original BN MAC functionality

The original BN MAC is shown in Figure 4.8. To compute a multiplication, first, the
desired quad word (64 bits) of each operand (WDRs, 256 bits) is extracted and forwarded
into the 64-bit multiplier. Next, the multiplication result can be shifted in multiple of 64
bits to achieve an efficient partial product summation with the value stored in the ACC
WSR. After summing the shifted result with the content of the ACC WSR the summation
result can again be shifted by 128 bits before writing it into the ACC WSR. In case the
ACC WSR should be set to zero before the addition the path to the adder can be blanked.
The final WDR update for the .so and .wo options is handled in the OTBN controller
block and not relevant to the BN MAC.

Splitting Montgomery over multiple cycles

The Montgomery algorithm (see Algorithm 6) requires a total of three multiplications.
As it was decided to only reuse the existing 64-bit multiplier the computation therefore
has to be split over multiple cycles. This splitting requires to store temporary values and
therefore two new registers named TMP and C are introduced. With these new registers
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the Montgomery algorithm can be computed in 3 cycles as described below where a
and b are the operands, d the bit-width of the operands, g the selected prime and R the
corresponding Montgomery constant for the chosen d and 4.

¢ Cycle 1:
- TMP = [a- b,
-C=a-b

¢ Cycle 2:

- TMP = [TMP - R},
- C=a-b (unchanged)

* Cycle 3:

— result = [C +TMP - q]d (—q) where (—q) represents the conditional subtrac-
tion.

A simplified implementation of this splitting is presented in Figure 4.9 where orange
highlighted components replace existing hardware with its vectorized components as
introduced previously (see Section 4.2.1 and Section 4.2.2). Therefore, this data flow
is already in vectorized fashion, i.e., it is assumed that the operands a and b are 64-bit
vectors containing either one 64-bit element, two 32-bit elements or 16 16-bit elements
and the final result is 64-bit wide and represents vector elements. The steps for each
cycle described above naturally applies for each vector element separately, i.e., the bit

selection steps [.]; and [ are also applied in a vectorized fashion.

In addition, this circuitry does natively support regular 64-bit multiplications as well
as its vectorizied version in a single cycle. as the first cycle computes a - b. The result in
this case is simply the output of the vectorized multiplier after the first cycle.

Integrating the approach

As mentioned, the instructions bn.mulv(m) (1) operate on whole WDRs (256 bits) whereas
the circuitry described previously can only handle 64 bit chunks at once. Therefore, to
multiply two WDRs they must be split into four 64 bit chunks which in turn requires
temporarily storing three 64 bit results. To temporarily store these values the existing
ACC WSR can be used. By processing a 64-bit chunk and then storing the result at
the corresponding quad word inside the ACC WSR this problem can be solved. As a
consequence, the execution of bn.mulv (1) requires 4 cycles to complete (4x1 cycle) and
the bn.mulvm(1) a total of 12 cycles (4x3 cycles). To handle this multi cycle execution a
BN MAC internal stateful logic handling the control signals is required. The following
section first discusses the actual RTL design of the data flow and only afterwards the
state handling is described.

Figure 4.10 shows the complete structure of the BN MAC where the existing func-
tionality is merged with the previously elaborated design. The original functionality
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Figure 4.9.: A vectorized multi cycle data flow implementation of a Montgomery mul-
tiplication. If compared to the original BN MAC the orange highlighted
components could replace existing hardware. Note, this is not the actually
implemented design.

is possible if the control signals ‘is_mod” and ‘is_vec” are set to zero. In this case, the
operands flow through the ‘Quad Word (& Lane) Selectors’ to select the desired 64-bit
chunk from the WDRs followed by the vectorized multiplier which is configured to
compute a 64-bit multiplication. The result then goes into the ‘Quad Word Shifter” and
is summed up with the ACC value. Finally, the addition result is output as result and
optionally shifted before it is written back into the ACC WSR.

For a regular vectorized multiplication again the desired 64-bit chunks are selected
and propagated into the multiplier. Then, the result is directly forwarded into the "ACC
Merger” which is responsible for merging it at the correct location in the ACC register.

To compute a Montgomery multiplication the new registers TMP and C come into
action. The first cycle is similar to the other multiplication modes except that the result
is stored in register C and the modulo d result is stored in TMP (taking only the lower d
bits is equivalent to computing a value modulo d). In the second cycle, the value of TMP
is multiplied by the Montgomery constant R and the result stored in TMP. This constant
is expected to be loaded, prior to the execution, into the MOD WSR at bits [61 : 32] which
is then extracted by the ‘"MOD Extractor” block. The ‘"MOD extractor” also provides the
prime g from the bits [31 : 0] for the last cycle. Finally, the last multiplication, the addition
with C and the conditional subtraction are performed and the result is then merged into
the ACC WSR. The conditional subtraction is implemented with the described basic
vectorized adder where all carries in are set to one and one input is inverted. Depending
on the carries out either the subtracted or original values are forwarded to the "ACC
merger’.

Regarding the security hardening, the BN MAC implementation is quite sophisticated
due to its complex MUX structures and many data paths. Blanking data paths that
are unused by the current execution cycle is implemented with blankers. These are
represented by a lowercase ‘b’ in Figure 4.10. Their control signal is noted next to
them and is generated by the predecoder and also the state handling logic as described
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Figure 4.10.: The BN MAC structure supporting the regular functionality as well as
vectorized (Montgomery) multiplication. A lowercase ‘b” represents a
blanker where its control signal is listed next to it.

in the next section. The more complex part is designing the various MUX structures
correctly such that no vector elements are mixed up. This report does not further
elaborate on these details as the RTL code contains detailed explanations. Repeating
these explanations here would result in overly complicated explanations as the context
of the actual RTL codebase! is required to understand the problematic cases. Please
note that the code submitted with this work does not contain a completely leakage free
BN MAC implementation. In particular, the ‘Quad Word (& Lane) Selectors’ need to be
reworked and there was no time left to fix the implementation. There are also issues
with the stability of the blanker control signals as explained in the next section.

Multi cycle state handling

The second main challenge of integrating the new functionality into the BN MAC
consists of generating the control signals over multiple cycles and still ensuring single
cycle execution for the regular bn.mulqacc instruction. To address this problem, a FSM
is designed whose states are depicted in Figure 4.11. This FSM has a default state named
‘Regular64b’ and is the entry point for any multiplication instruction. Per default, the
control signals are set such that the regular 64-bit multiplication is executed. This is
required to support single cycle execution of the original instructions (bn.mulgacc).
However, this state also includes two sub-states ‘StartQWO0’ and ‘StartModQWO0C0’
which are the starting point for all multi cycle instructions and both states include their
respective lane modes. For a regular vectorized multiplication the FSM switches into
the ‘StartQW0’ state (within the starting cycle) and progresses on the ‘QW1’, “QW2" and
‘DoneQW3’ path for the remaining 3 cycles and finally returns into the default state.
These states then set all required MUX, register write enable and blanker signals. The
modulo multiplication, i.e., Montgomery multiplication, is handled similarly except
that there are a total of 12 states. For example, the state ‘ModQW1C1’ represents the

1The code is open source, see [25]
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Figure 4.11.: The state diagram of the FSM handling the BN MAC control signals. The
initial state ‘Regular64b” handles the single cycle multiplication and con-
tains two sub-states which serve as starting point for both the vectorized
regular and Montgomery multiplication.

cycle where the 2nd cycle of the Montgomery multiplication for the 2nd 64-bit chunk is
performed.

How the control signals must be set for each state is documented in Figure A.1. This
figure also states which component / logic generates a control signal value which is
relevant for the blanker control signals. As described in Section 2.6.2, a control signal
for a blanker must be predecoded, i.e., must come directly from a register. To reduce
the complexity of a first implementation, the designed FSM does generate some blanker
control signals combinatorially and therefore these blankers are rendered ineffective
from a security aspect. However, their functionality is still relevant for the circuit to work
properly. Generating all blanker signals for the multi cycle execution in the predecoder
is not possible as the OTBN pipeline is stalled during the multi cycle execution (this is
explained in Section 4.3). Therefore, the predecoder is also stalled, i.e., the generated
signals are static over the duration of the instruction.

Implementing a solution to this problem did not fit into the timeline of this project but
a possible approach is to adapt the FSM to also predecode these signals. This means the
FSM sets the signal for the next state and has flops to stabilize the signals such that in
the next cycle proper blanker control signals are present. The problem of this approach
is how to know what type of multiplication should be performed in advance (one cycle
earlier). A solution would be to transfer the flops for registering all the control signals,
that originate from the FSM or the predecoder, into the FSM. Then the predecoder
forwards the combinatorial / unregistered signal to the BN MAC. These signals are only
valid in the next clock cycle. When the FSM is in the default state (‘Regular64b’), those
flops get the value from the predecoder, otherwise from the FSM.

4.3. Integration into pipeline
Integrating the modified BN ALU and the new instruction into the OTBN pipeline is

relatively straightforward as all of these instructions execute in a single cycle. The new
instructions are simply added to the decoder and predecoder logic in the same fashion
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as all the existing instructions are decoded. On the other hand, integrating the new BN
MAC and its multi cycle instructions gives rise to multiple challenges.

The first problem is that the BN MAC requires the value of the MOD WSR which is
part of the BN ALU and thus not directly accessible. This problem is solved by extending
the BN ALU interface to expose the MOD WSR via an integrity protected signal which
then is routed through the controller into the BN MAC.

The second challenge lies in enabling a multi cycle execution as the OTBN has no
actual support for multi cycle instructions. However, the OTBN features indirect WDR
load and store instructions (bn.1lid and bn.sid) where the source / destination WDR is
defined by the value in a GPR. This indirect load from the GPR cannot be done in the
same cycle as accessing the WDR and thus requires a stalling mechanism that stalls the
pipeline until the indirect load has finished. When the indirect load has finished the
actual bn. lid execution is continued. The same mechanism is used to stall the pipeline
while a multi cycle multiplication is executed. It is implemented by asserting the stall
flag inside the OTBN controller until the BN MAC asserts its valid flag.

During these cycles, the FSM steps through the required states as described in Sec-
tion 4.2.4 and performs multiple reads from the source WDRs and should only update
the destination WDR in the last cycle. However, the current BN MAC integration has
one unpleasant limitation namely, a source WDR to any multi cycle multiplication may
not be the destination WDR for the same instruction execution. The reason is that in the
implemented integration, the destination WDR write enable signal is set over the whole
duration instead of only for the last cycle. This design decision was required because
the predecoder generates the write enable signal and as it is stalled cannot change it
dynamically as otherwise a predecode error would arise. The indirect loads and writes
also suffer from this problem, but there a special predecoding handling is implemented.
However, for this project, it was infeasible to implement this due to the complexity and
the limited project duration.

4.4. Verification

Designing a comprehensive verification suite to test the implementation of the proposed
instructions was an essential part of the work. Whereas the OpenTitan project relies on a
fully fledged UVM (Standard Universal Verification Methodology) and formal property
verification approach, for this project a simplified approach was chosen. This approach
differentiates between the new building blocks like the vectorized multiplier and the
integration / modifications to the BN ALU, BN MAC and OTBN pipeline.

Testing the low level RTL implementations of building blocks is supported by in-
dividual SystemVerilog testbenches running on QuestaSim 2023.4. These testbenches
instantiate the module and execute the defined testcases in complete isolation from any
other component which simplifies testing as well as debugging. Detailed instructions on
how to perform the module tests can be found under hw/ip/otbn/pre_dv in [25].

To test the modifications and integration into the ALUs such a testbenche approach is
infeasible as the ALUs depend on too many external interactions. Therefore, testing the
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new instructions, and thus the integration, was done by using a co-simulation of the RTL
code with the OTBN simulator. This required to extend the existing OTBN simulator
with a cycle accurate implementation of the proposed instructions, which in turn also
required to write test cases for the simulator. These simulator test cases were integrated
into the existing simulator testing framework present in hw/ip/otbn/dv/otbnsim. The
proposed instructions finally were tested by running simple OTBN assembly programs
in a co-simulation based on Verilator and the extended OTBN simulator. All these test
programs can be found in sw/otbn/vectorized/tests. To quickly get a fail/pass test
feedback during development, the OTBN project also features a smoke test program
that executes all available instructions at least once. This smoke test was extended with
the proposed instructions.
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Baseline benchmark

This chapter describes benchmarks performed to investigate the benefits of the im-
plemented ISA extension. These benchmarks include NTT computations for 32-bit
elements which were implemented with either the default OTBN instructions or the
proposed instructions. Such implementations of the NTT and INTT on the OTBN have
already been published by e.g., [12, 11]. The benchmarked implementations follow these
implementations closely.

Note that benchmarking the NTT computation only illustrates a limited aspect of
the advantages provided by the proposed extension. The vectorized instructions are
also highly beneficial when computing elementwise multiplications in the NTT domain
and other computations related to ML-DSA. However, these applications were not
benchmarked in this work due to time constraints and as there exists a comprehensive
analysis in [11]. Additionally, the benefits of the proposed instructions are discussed
only for 32-bit elements, but the benefits are even more pronounced for 16-bit elements.
For 16-bit elements, one instruction operates on twice the number of elements therefore
approximately reducing the required instructions.

5.1. Non-vectorized NTT implementation

As explained in Section 2.4.1, a NTT requires to compute butterflies over multiple layers.
How to compute such a butterfly on the default OTBN has already been shown in
Listing 3.1. This section therefore focuses on optimizations regarding the data loading
and possible pre-computations.

For example, for a 8 layer NTT (n = 256) a naive approach would be to compute
the first layer by loading the coefficients ag,a1,a128, 2129 into the WDRs, compute the
butterflies and store the results back into memory. This would be repeated until the
tirst layer is fully processed and then the other layers are computed in a similar fashion.
However, this approach requires loading and storing all coefficients once per layer
which is ineffective and can be optimized by applying a technique called layer merging.
For example, to merge two layers, instead of the previously mentioned coefficients the
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coefficients ag, a¢4,a128,a192 are loaded into WDRs. This allows to compute the butterflies
(a0,a128), (a64,a192) and immediately afterward the computation of the second layer
butterflies (a9, a¢4) and (a128,a192) (Figure 2.1 may help to understand this optimization).
With a 2-layer merge, the number of load and store instructions can be reduced by a
factor of 2. Theoretically, all layers of a NTT could be merged. However, the limiting
factor is the number of available registers as merging  layers requires 2! coefficients to
be loaded simultaneously. Following the implementation of [12] the best approach for
OTBN is to create a 4-4 layer merge which can directly be applied to Algorithm 4 and
also Algorithm 5.

As this work focuses on a NTT for ML-DSA the parameters of the NTT are known at
compile time. This allows to precompute the twiddle factors and save multiplications
and exponentiations at the cost of program size. By using the butterfly implementation
described in Listing 3.1 these precomputed twiddle factors must be stored in the Plantard
representation (see Algorithm 7). Another optimization for the INTT is to multiply half
of the last layer twiddle factors with the factor n~!. This saves n/2 multiplications for
the final scaling.

The described NTT approach is implemented in the functions ntt_base_dilithium.s
and intt_base_dilithium.s. Test programs invoking these functions can be found at
sw/otbn/ntt/tests in [25].) For a more in-depth description of the implementation
see [12], the source code is publicly available.?

5.2. Vectorized NTT implementation

For the vectorized NTT implementation the same optimizations apply as for the non-
vectorized version. The difference lies in the computation of the butterflies as the
approach in Listing 3.2 is implemented. Due to this efficient computation less WDR
loads are required and therefore fewer loops.

When implementing the NTT layer merging, one peculiarity arises for the second
layer merge (layers 5 to 8). The coefficients are stored in memory in a linear fashion,
and they are also loaded in this order into the WDRs. This does not present any issues
when computing layers 1 to 5, as the required coefficients are loaded into distinct WDRs.
However, for layers 6 to 8, the stride between the coefficients is 4, 2, and 1, respectively.
This necessitates the computation between coefficients inside the same register, which is
not feasible to compute with the vectorized instructions. To resolve this issue, the WDRs
must be transposed such that the stride between two WDR elements is 8. Listing 5.1
shows this transposition for 8 WDRs. The remaining layers can then be computed
efficiently with the use of the vectorized instructions. Prior to storing the results back
in memory, the transposition must be reversed by applying Listing 5.1 a second time.

IThe benchmarks are available on the ‘benchmark’ branch.
Commit 94bdc0a069d3eb3a26dd579350844315fd66e0f1
2https ://9ithub.com/dop-amin/dilithium-on-opentitan-thesis
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/* Transpose wO - w7 via w24 - w31l */
bn.trnl.8S5 w24, w0, wl
bn.trn2.8S w25, w0, wl
bn.trnl.8S w26, w2, w3
bn.trn2.8S w27, w2, w3
bn.trnl1.8S w28, w4, w5
bn.trn2.8S w29, w4, w5
bn.trnl.8S5 w30, w6, w7
bn.trn2.8S w31, w6, w7
bn.trnl.4D w4, w24, w26
bn.trn2.4D w24, w24, w26
bn.trnl.4D w26, w25, w27
bn.trn2.4D w25, w25, w27
bn.trnl.4D w27, w28, w30
bn.trn2.4D w28, w28, w30
bn.trnl.4D w30, w29, w3l
bn.trn2.4D w29, w29, w31l
bn.trnl.2Q w0, w4, w27
bn.trn2.2Q w4, w4, w27
bn.trnl.2Q wl, w26, w30
bn.trn2.2Q w5, w26, w30
bn.trnl.2Q w2, w24, w28
bn.trn2.2Q w6, w24, w28
bn.trnl.2Q w3, w25, w29
bn.trn2.2Q w7, w25, w29

Listing 5.1: Transposing the WDRs by using the proposed bn.trnl/2 instructions.

The vectorized NTT is implemented in the functions ntt_mldsa.s and intt_mldsa.s.
The benchmark programs are also at sw/otbn/ntt/tests in [25].

5.3. Results

The results of the performed benchmarks are presented in Table 5.1. As expected,
the proposed ISA enables a more efficient NTT computation. With the vectorized
instructions the 32-bit element NTT computation is about 3.46x faster and 3.40x for
the INTT, respectively. The effect of the multi cycle instructions is clearly visible when
comparing the number of instructions with the total required cycles. For vectorized
implementations, the ratio of stall cycles to instructions reaches up to 200% for the
vectorized NTT implementation.

In regard to the code size, the vectorized approach has a clearly smaller instruction
memory footprint. Whereas the default NTT implementation requires 2296 B the vector-
ized implementation only requires 1660 B (27 % less) and for the INTT the savings are
30 % (2408 B to 1676 B). Again, this is because one instruction can operate on multiple
elements at once. The DMEM requirements are also reduced significantly by 44 % and
45 % for the NTT and INTT, respectively. The reason here is, that the Twiddle factors
can be stored in Montgomery representation instead of Plantard representation which
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Benchmark ISA Cycles Instr. DMEM (B) IMEM (B)
NTT Default 8156 00 7711 x1.00) 3744 a1.00) 2296 (x1.00
Baseline 2360 (s.46) 785 0.10) 2080 (x0.56) 1660 073
Default 8649 00 8204 x1.00) 3752 (x1.00 2408 (x1.00)
INTT

Baseline 2545 (340 794 0.10) 2080 0.55) 1676 o.70)

Table 5.1.: Benchmark results for NTT and INTT implementations based on the default
and proposed ISA.

reduces the size of the twiddle factor array by half (32 bits vs 64 bits).
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Baseline synthesis

After exploring the computational benefits of the proposed vectorized ISA, this chapter
focuses on its area requirements. In order to evaluate the proposed extension, the elabo-
rated design and the default OTBN were synthesized to perform an area-performance
analysis based on the TSMC65 technology, using Synopsis 2019.03. This chapter first
describes the synthesis setup which requires some attention to stop the tool from op-
timizing away security related redundant signals, such as blankers and onehot MUX
structures. Finally, the achieved results are presented and the critical path is explored.
The default, unmodified OTBN design used as the starting point is hereinafter referred
to as the default design. The design implementing the proposed instructions is referred
to as the baseline design.

6.1. Synthesis setup

The synthesis was set up based on an established setup created by ETHZ’s Integrated
Systems Laboratory (IIS). However, there were some modifications required regarding
the optimization process. When synthesizing an RTL design, the synthesis tool tries
to optimize any combinatorial logic as well as to remove redundant signals. However,
this poses a problem for a security hardened design as it may modifies structures that
must be synthesized exactly as designed as otherwise their security functionality is
lost. In the OTBN for example, this applies, among other things, to the blankers and
onehot MUXs. These constructs with their special structure (see Section 2.6.2) could be
optimized heavily in regard to their area but this would break their security purpose.
E.g., a onehot MUX would possibly be optimized to a regular MUX which would lead
to leakage.

To avoid this problematic optimization, the OpenTitan ecosystem features generic
primitive modules for such circuitry. These modules must be used wherever such special
hardware is required. This allows to specify extra constraints for the synthesis, such that
these blocks are not optimized. In this work, the implementation of these primitives
was directly implemented with TSMC65 library cells, and all modules were given a
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‘set_size_only’ constraint. This prevents the synthesis tool from removing these cells and
therefore ensures that the expected hardware is generated. For more detail about the
synthesis setup see Appendix B.3.

6.2. Synthesis results

The results of the area-performance analysis are shown in Figure 6.1 where for both
designs the clock period was swept from 4 ns to 25ns. ! The dashed lines in Figure 6.1
show the absolute minimal area requirements which are estimated by setting the clock
to 1000 ns. For this case, the baseline requires about 11.5 % more area and for the realistic
clock cycles above 15ns the increase is between 12.9 % to 17.4 %. With clock periods
below 12 ns the area requirements begin to rise gradually for the default design until
the hard border at around 5.5 ns is reached. In comparison, the baseline design curve
steepens earlier and the minimal clock period is around 8ns. At this point, the area
increase is about 22.6 %. A more in-depth analysis of the area result is presented in
Section 7.3. This part contains area results for the designed vectorized components and
an analysis of the optimized baseline design. For a critical path analysis of the default
OTBN design see Appendix B.1.

6.2.1. Critical path analysis

Regarding any possible baseline optimizations, it is of interest to know what part of the
design limits the performance. In the following, the baseline’s critical path is investigated
for a clock period of 8ns. This clock period is presented as it is the fastest the baseline
can be run at and it is the default clock period for the OTBN in OpenTitan’s Earlgrey
microcontroller.

Figure 6.2 depicts the critical path which takes 7.7532 ns and has a slack of 0.0001 ns.
The path originates from the flops holding the predecoded signals for addressing the
Bignum register file and then propagates through the BN MAC. Inside the BN MAC, the
path leads, as expected, through the vectorized multiplier and vectorized adder to the
conditional subtraction for the Montgomery multiplication. Finally, the path arrives at
the write port of the ACC WSR. This described path is the same also for the 2nd most
critical path (7.7524 ns, 0.0003 ns). The 3rd path is almost identical but branches after the
ACC Merger and ends at the Bignum register file (7.7514 ns, 0.0003 ns). An exception is
the 4th path (7.7311 ns, 0.0004 ns), which starts also at the predecoding flop, traverses the
Bignum register file and then enters the BN ALU. There it passes the Adder X, Adder
Y and the modulo result selection. It then propagates through the integrity check for
the MOD WSR and thus into the secure wipe handling. From there, as the final step, it
affects the reset value path of the ACC WSR. These presented critical paths are also the
most common critical paths for the other synthesized clock periods.

1Designs can be found in [25].
Default: a332afe31fce61780385¢c9dd045ff3aa2c540fed
Baseline: 53e3ebe35e76bcdef12c005ab5aeb35e326bad o
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Figure 6.4.: This figure shows where time is lost on the critical path for the baseline
OTBN at 8ns. Each bar represents the increment in delay when the signal
propagates from one net to the next net.

In addition to knowing where the critical path runs along, it is important to understand
which parts contribute to the delay and to what extent. This information is presented in
Figure 6.3. The horizontal axis represents the critical path by listing nets in the order in
which the signal propagates, i.e., the signal propagates from left to right. The bar for
each net corresponds to the absolute time required until the signal arrives at this net. A
jump therefore represents that the circuitry to this point takes a long time. An alternative
representation is shown in Figure 6.4 which shows the increment in delay from one
net to the next net. From this representation, it is clearly evident which components
contribute to the signal propagation delay. The most contributing component is the
vectorized multiplier, accounting for 3.6041 ns. Other bottlenecks are the Bignum register
file read port (the orange part, 0.8683 ns) and the redundancy encoding of the ACC write
data (the last step, 0.5321ns). In regard to a design optimization, both of these are
of lesser interest because these cannot be changed easily. The most interesting part
is the vectorized multiplier. However, due to the chosen ‘reuse” architecture and the
required blankers, the vectorized multiplier does not allow for significant optimizations.
Therefore, three other decent contributors remain: the vectorized adder and subtractor as
well as the ACC merger part. These add 0.5875ns, 0.6119 ns and 0.4801 ns, respectively.
The possible design optimizations based on these findings are explored in Chapter 7.
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Chapter

Design optimization

The next step of this project was to optimize the design based on ideas gathered during
the implementation and analysis of the baseline. These ideas range from algorithmic
changes to RTL detail changes. Due to time constraints, only one idea was explored by
implementing and benchmarking it. This chapter first explores the selected idea in detail
whereas the other ideas are described in Section 8.2. The chapter then concludes with
a comprehensive analysis of the benchmark and synthesis results of all implemented
designs.

7.1. Optimization proposal

The analysis in Chapter 5 and Chapter 6 showed that for the gained performance the
resulting area overhead is decent but the timing of the baseline design is rather deficient.
In partial, the critical path is along the hardware implementing the Montgomery multi-
plication and one major delay contributor is the circuitry for the conditional subtraction.
This circuitry performs the last step of the Montgomery multiplication (see Algorithm 6
and Section 4.2.4). However, this conditional subtraction functionality already exists in
the implementation of bn.addvm (vectorized addition with pseudo modulo reduction).
The computation of a vectorized modulo multiplication over a whole WDR can therefore
be changed in the following way:

¢ Compute the Montgomery multiplication without the conditional subtraction for
the whole vector (i.e., WDR) and store the result back into a WDR. This requires
still 12 clock cycles.

¢ Perform a bn.addvm on the previously computed result where the other operand is
a zero vector. This computes the conditional subtraction and requires one clock
cycle.

The final result is the correct Montgomery multiplication result but computing takes
13 instead of 12 cycles compared to the baseline. This adds a theoretical performance
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overhead of about 8.3 % to a vectorized Montgomery multiplication. However, it allows
to remove the complete conditional subtraction circuitry resulting in a shorter critical
path and smaller area requirements. These savings are more valuable as these apply at
all times and not only to the computation of a vectorized Montgomery multiplication.
Figure 7.1 shows the modified BN MAC architecture without the conditional subtraction
components. Compared to the baseline design, the subtractor and the required MUXSs,
for selecting the correct results, are removed and the vectorized adder result is directly
forwarded to the ACC Merger.

7.2. Benchmark results

The software performance of the optimized design was evaluated based on the same
benchmarks as used in Chapter 5 for the baseline. The only modification was to integrate
the conditional subtraction which requires to add a bn.addvm after each Montgomery
multiplication. These NTT and INTT computations are implemented in the functions
ntt_mldsa_exp_reduction and intt_mldsa_exp_reduction and the corresponding test
programs at sw/otbn/ntt/tests in [25]!.

Table 7.1 lists the achieved metrics next to the results already presented in Chapter 5.
With this design optimization, the achieved performance is slightly reduced as it only
achieves a speed up of 3.27x whereas the baseline achieves 3.46x (—5.4 %). Still, this is a
valuable improvement. The performance loss is due to the extra bn.addvm instructions
which also appear as an increase in instruction count and code size. The optimized design
requires 919 instructions resulting in a code size of 1928 B. This is 16 % worse than the
baseline but still yields a 16 % improvement compared to the default design. Regarding
the data memory, as expected, the optimized design requires the same memory as the
baseline design.

For the INTT, these observations apply equally but the performance loss is slightly

1On the branch ‘benchmark’. Commit 94bdc0a®69d3eb3a26dd579350844315Fd66e0F1
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Benchmark ISA Cycles Instr. DMEM (B) IMEM (B)

Default 8156 100 7711 (x1.00) 3744 .00 2296 (x1.00)
NTT Baseline 2360 (x3.46) 785 0.10) 2080 (x0.56) 1660 073
Optimized 2494 a2 919 o.12) 2080 (xo.56) 1928 xo0.84)

Default 8649 100 8204 (x1.00) 3752 x1.00) 2408 (x1.00)
INTT Baseline 2545 (3.40) 794 (x0.10) 2080 o55) 1676 o.70)
Optimized 2695 a2y 944 x0.12) 2080 (x055) 1976 o082

Table 7.1.: Benchmark results for NTT and INTT implementations for all three designs.

more pronounced. It is only possible to achieve a speed up of 3.21x instead of 3.40x.
The reason is, that the INTT contains more multiplications than the NTT due to the
scaling with n~! and thus requires more additional bn.addvm instructions. This again is
represented in the increase of code size from 1676 B to 1976 B. However, compared to
the native implementation it still presents a reduction of 18 % in code size.

7.3. Synthesis results

Using the same synthesis setup as described in Section 6.1, the optimized design was
synthesized for clock periods of 4ns to 25ns. 2 The result is plotted together with the
results of the default and baseline design in Figure 7.2 and listed in Table 7.2. In the
following, these results are analyzed in detail. Further analysis of the critical path for
the default design can be found in Appendix B.1.

For slower clocks down to 12 ns the optimized design is only about 1 % smaller than
the baseline design except at 18 ns and 20 ns where the savings are 3 % or even none. At
10 ns the designs coincide but for faster clocks, a clear separation is visible until both
designs hit their timing boundary at around 7.8 ns and 7.3 ns for the baseline and the
optimized design, respectively. The savings at 9ns is 2 % and at 8 ns it amounts to 4 %
which is a considerable saving. Compared to the default design at 8 ns, the optimization
reduces the area overhead of the extension from 23 % to 19 %.

Interestingly to know, despite the total required area, is to understand which compo-
nents contribute to the area overhead the most. In the following, the designs are analyzed
in detail in order to understand the area overhead. This analysis was performed for the
results of the 8 ns clock period with the same reasoning as in Chapter 6. The critical path
of the optimized design is analyzed in a separate discussion, see Section 7.3.1.

Starting at the OTBN component level, the area requirements of the modified com-
ponents are presented in Table 7.3 and Figure 7.3. Whereas in the default design, the

2Designs can be found in [25]. Default and Baseline are the same as in Chapter 6.
Optimized: 1c10283e77adcb1f384f08d6cab4eee5al9cldbe
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BN MAC is smaller than the BN ALU (48.508 kGE vs. 60.153 kGE), in both, the baseline
and optimized design, the BN MAC is significantly larger. The BN MAC requires up to
113.206 kGE and 101.671 kGE for the baseline and optimized design, which is an over-
head of 133 % and 110 %, respectively. Breaking down the BN MAC into its components,
as shown in Table 7.4, reveals that the multiplier is the major contributor to the area
overhead for both designs. It requires about 56 % of the total BN MAC area where most
of it is actual combinatorial logic as the internal blankers contribute only about 4 %
to the total multiplier area. A comparison to the default multiplier is not possible as
the synthesis report does not explicitly state the multiplier area for the default design.
The component “Untraceable” includes all the area which is not explicitly named in the
synthesis report and thus it is not possible to break it down further.

Returning the focus back to the OTBN components, the BN ALU changes only moder-
ately from 60.153 kGE to 74.848 kGE (24 %) and 76.668 kGE (28 %). The breakdown into
the components of the BN ALU is shown in Table 7.5. The biggest contributors are the
untraceable elements with 34.102 kGE and 34.311 kGE followed by the vectorized shifter
with 14.603 kGE and 15.446 kGE for the baseline and optimized design, respectively. For
unknown reasons, the optimized BN ALU is slightly larger than the baseline’s despite
there being no differences to the BN ALU. One assumption is that this results from how
the tool optimizes certain paths.

Of the remaining OTBN components, the controller stays approximately the same
with 33.735kGE and 32.842 kGE for the baseline and optimized design, respectively.
However, the decoder and predecode more than triple in size. The decoder increases
from 0.743 kGE to 2.684 kGE and 2.759 kGE. The predecode increases from 0.943 kGE
to 2.850 kGE and 2.839 kGE. Breaking down the exact structure is not possible as the
synthesis report does not provide this information. However, it is assumed that the
increase is due to the additional control signals required for the new instructions and
the extended decoder structure.

7.3.1. Critical path analysis

The critical path of the optimized design, shown in Figure 7.4, takes 7.7525ns (slack
is 0.0ns) and follows a similar path as for the baseline design (7.7532ns, 0.0001 ns). It
originates at the flop which predecodes the Bignum register file address and propagates
through the Bignum register file and controller into the BN MAC. There it follows,
the same path as in the baseline design, through the ‘operand a quad word selector’,
vectorized multiplier and the vectorized adder. Here the path diverges and does not
end at the ACC WSR. Instead, it continues to the BN MAC output and ends in the
write port of the Bignum register file. The 2nd most critical path is similar but ends
at the flag registers in BN ALU (7.7020ns, 0.0001 ns). It starts at the same point, but
when entering the BN MAC via the operand b, it traverses the lane MUX and then
follows the same path until after the vectorized adder. From there, it diverges into the
flag update logic and therefore ends at the flag registers in the BN ALU. The 3rd most
critical path is similar to the 1st but ends into the ACC instead of the Bignum register
file (7.7524 ns, 0.0002 ns). The 4th and some following paths are again the same as the
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Total Area (kGE) Slack (ns)

Clock (ns)  Default Baseline Optimized Default Baseline Optimized
4 604.620 caon  693.770 (15  691.868 a1y —1.273  —3.932 —3.109
5 586.196 (a0 693.185 a1 687.218 w1y —0.359  —2.855 —2.246
6 552.083 100 652.428 (11 655.577 (x119) 0.000 —1.791 —1.148
7 522.902 100 630.631 a2 636.900 (a22) 0.000 —0.815 —0.282
8 503.044 100 616.833 123 598.051 x119) 0.000 0.000 0.000
9 500.171 ¢aoo  593.459 (119  587.549 17 0.001 0.000 0.000
10 492.702 ¢aon  574.656 117 575.900 117 0.000 0.000 0.000
12 493.400 100 557.115 13 552.117 a2 0.000 0.000 0.000
15 479.635 100  548.188 (11e)  543.161 (a3 0.001 0.000 0.000
18 474.565 100 557.287 117 540.527 (aie 0.013 0.001 0.000
20 481.501 ¢aon 546.086 113 548.039 (119 0.001 0.000 0.004
25 474.578 aoo 547.423 115 542.673 (114 0.035 0.002 0.000
1000 440.669 a0y 491.302 a1y 490.791 a1y 906.594  884.401 888.516

Table 7.3.: Area requirements of the modified OTBN components for all three designs at

Table 7.2.: Synthesis results for all three OTBN design variants.

Total Area (kGE)
Component Default Baseline  Optimized
Bignum MAC  48.508 00 113.206 (233 101.671 210
Bignum ALU 60.153 (x1.00) 74.848 (x1.24) 76.668 (x1.28)
Decoder 0.743 (x1.00) 2.684 (x3.61) 2.759 (x3.71)
Predecode 0.943 (x1.00) 2.850 3.02) 2.839 z.01)
Controller 32.161 .00 33.735 (a.0s) 32.842 a0
OTBN 503.044 caony 616.833 123y  598.051 19

8ns.

58



7. Design optimization

B Default
mmm Baseline
B Optimized

100

80 1

60 1

Area (kGE)

40+

201

Bignum MAC Bignum ALU Decoder Predecode Controller

Figure 7.3.: Area requirements of OTBN components in kGE for all three designs at 8 ns.

Total Area (kGE)

Component Baseline Optimized

Vectorized Multiplier =~ 63.887 57.908

Blankers (2.532) (2.171)

Untraceable (61.355) (55.737)
Vectorized Adder 5.667 5.938
Vectorized Subtractor 1.847 0.0
Blankers 5.867 4.862
Untraceable 35.938 32.964
Total 113.206 101.671

Table 7.4.: Area breakdown of the BN MAC at 8ns. Blankers does not include the
blankers inside the other components.
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Total Area (kGE)
Component Baseline Optimized
Vectorized Modulo Replicator 3.004 2.997
Vectorized Adder X 5.756 5.996
Vectorized Adder Y 5.761 6.019
Vectorized Result Selector 1.359 1.630
Vectorized Shifter 14.630 15.446
Vectorized Transposer 6.432 6.435
Blankers 3.803 3.833
Untraceable 34.102 34.311
Total 74.848 76.668

Table 7.5.: Area breakdown of the BN ALU at 8 ns. Blankers does not include the blankers
inside the other components.

first (4th: 7.7529 ns, 0.0002 ns).

Figure 7.5 shows the distribution of the delay along the most critical path. On the
horizontal axis the critical path is represented by listing nets in the order in which the
signal propagates, i.e., the signal propagates from left to right. The bar for each net
corresponds to the absolute time required until the signal arrives at this net. A jump
therefore represents that the circuitry to this point takes a long time. An alternative
representation is shown in Figure 7.6 which shows the increment in delay from one net
to the next net. As the path is almost the same as for the baseline design, the delay is
also distributed similarly. The first major contributor is the Bignum register file, where
the operands are read from, which adds 0.8922 ns. Inside the BN MAC, the vectorized

LHo flag update

Figure 7.4.: The critical path, marked in red, through the BN MAC of the optimized
OTBN design for a target clock of 8ns.
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Figure 7.5.: This figure shows where time is lost on the critical path for the optimized
design at 8ns. Each bar represents the time required to reach this net in the
design.

multiplier requires 4.0450 ns, slightly more than in the baseline design (3.6041 ns). Next,
the vectorized adder adds 1.0496 ns (0.5875 ns for baseline). The final considerable delay
is the actual write back into the Bignum register file which requires 1.8714 ns. Compared
to the baseline, the delays of the vectorized multiplier and adder are higher allowing the
synthesis to generate more optimized paths and this is probably where the area savings
originate from. In case the critical paths of the different designs are to be compared,
normalized figures are given in Appendix B.2.
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Chapter

Conclusion and Future Work

8.1. Conclusion

In this project, we designed an optimized SIMD extension for OTBN to enable efficient
computations of efficient polynomial arithmetic, as observed in emerging post quantum
cryptography schemes. We analyzed the ML-DSA algorithm and defined a generic and
lightweight ISA extension to accelerate the crucial NTT computation. We implemented
the extensions in hardware, focusing on reusing existing resources and including the
necessary security features such as register blanking. The performance benefit of the new
instructions is demonstrated by benchmarking the NTT computation and synthesizing
the design resulting in a speed up of 3.46x for an area overhead of 23 % compared to
an NTT implementation based upon the default OTBN. As a next step, we analyzed
the benchmark results in a broad spectrum and proposed a hardware-software co-
optimization. We showed that this optimized design results in a slightly lower NTT
speed up of 3.27x whilst only leading to an area overhead of 19 %. In conclusion, the
elaborated extension provides a solid foundation to enable efficient implementations of
PQC schemes like ML-DSA on the OTBN.

8.2. Future work

For a full and secure implementation of ML-DSA, future work is definitively required
on the following topics:

¢ The instructions bn.mulvm(1) have the limitation that the source and destination
WDRs may not be the same. This is due to the complexity of predecoding the
register write signals and could not be addressed within the project time frame.

* The control signals for the BN MAC blankers, generated by the FSM, are unstable
and therefore render certain security measures ineffective. In addition, the RTL
implementation of the lane selection generates leakage across vector elements. A

63



8. Conclusion and Future Work

solution to both problems was presented but due to time constraints, the solutions
could not be implemented.

¢ The reviewed literature reported instruction and data memory requirements up to
64 KiB for ML-DSA whereas the current OTBN only provides 4 KiB and 8 KiB of
data and instruction memory, respectively. This requires further work to investi-
gate whether more memory is required or if there is a smart solution.

Due to time constraints, this work only explored one of many ideas on how to optimize
the design. The following part presents ideas that might be worth to explore further.
These ideas cover optimizations regarding performance as well as reducing the area and
improving the timing.

Parallel multiplier

This idea is about increasing the performance by extending the BN MAC such that it can
process 128 bits instead of 64 bit chunks. With this design, a Montgomery multiplication
over a complete WDR could be performed in 6 cycles instead of 12 cycles which presents
a huge performance boost. The resulting design would definitively result in a large area
overhead as the multiplier is the most costly element. Furthermore, the whole BN MAC
data path would have to be extended (adders, register and MUX). An idea to amortize the
additional area is by simultaneously introducing a variant of the bn.mulgacc instruction
which directly computes a 128-bit multiplication. This could also benefit big number
tasks.

Support only 32-bit elements in BN MAC

When limiting the supported element width to 32 bits, the BN MAC design could
be simplified. For example, the lane selection would be simpler and the vectorized
multiplier could be implemented with fewer partial product generations (fewer but
larger multipliers) and thus less additions and blanking is required. In regard to the BN
ALU, this limitation is not as beneficial. It would only remove some small MUXSs inside
the vectorized adders and the modulo result selection logic. However, these components
are quite small in terms of size and are not on the critical path.

Opcode complexity tradeoff

Another idea is to split the complex multiplication instructions into multiple instructions.
This way, a bn.mulvm instruction would require the programmer to write multiple
instructions in series. With this, some of the FSM logic can be transferred into the
software code and thus allows a simpler hardware implementation of the control logic,
especially in regards to the control signal predecoding. The drawback here is, that
the OTBN has a RISC opcode architecture and thus only limited numbers of opcodes.
Wasting these precious opcodes and increasing programming complexity as well as code
size is probably not worth the area savings.
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Alternative modulo reduction

Instead of computing a Montgomery reduction an alternative approach using recursive
additions is maybe of interest. Such an approach is described in [7]. There, the prime is
split into powers of two and with some algebraic tricks the reduction is converted into
a small multiplication and a series of additions. However, this would require a rather
drastic change in architecture and may leads to a long critical path.

Lazy reduction

It would be worth checking whether the OTBN ISA allows to perform lazy reduction on
some parts of the ML-DSA computations. A lazy reduction means, that when executing
a series of operations on finite field elements, the modulo reduction is only performed
after the last operations. This is possible if a full reduction can be computed and the
intermediate results do not overflow the word size. If possible, some expensive bn.mulvm
instructions (12 cycles) could be replaced with 4x faster bn.mulv instructions.
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Appendix A

Bignum MAC FSM control signals

Figure A.1 lists all BN MAC control signals for all possible multiplication types and for
each FSM state.

66



*9)©)S OBa 10§ Sanjea [eusrs [oiuod NS DVIN Ng oYL ' 1T’V 23]

E
=
. g v [ 0 v 0 v o v o pien] E
ﬂ o g o Poposop U5 ppe 008, 995 R J9p0380
v 0 [ v 0 o I v [ 0 [ v 0 0 v 0 v [ 0 P9p0o0pad q pinouS | e Jabiow oo | =]
d 0 0 0 ) papooopeid 508 19501 010501 s ppuooe| _Jepoospoid
= 3 | 0 | 0 | 3 | 0 | 0 | v | 0 | 0 I v [ [ [ [ 0 0 0 Popodepaid oq pINOYS o pow ppe Ws3
] 0 0 0 v 50N 5i~ WM paoeidol 0q 1080 Uosor ppe|  1opooopaig|
n 3 | 0 | 0 | 3 | 0 | 0 | v | 0 | 0 I v [ 0 | 0 0 0 0 Poposepaid oq pINOYS UoppE 9| Wsd
[ v v 0 o ieioW 0| Japooapa
Q 0 | D [ v I 0 | v [ v I 0 | v [ v [ 0 | v [ v 0 0 0 papodspaid oq pINOYS. Us~pour jnw Ws
Q v | ) | 0 | D | 0 | 0 | v | 0 | ) | v | 0 | 0 0 0 0 Papooapaid 8q pINoys s ppe_jnus wsd
o 0 o 3 59N Si- M paoeidol 9a 108D U s W Jepooapeid
M v v v v U do| __Japooepaig|
wn v [ o [ o [ v [ o [ o [ % [ o [ o [ ¥ 0 0 s seur g U o s oeu g [ v oo [Fiios ey rua e e wed|
F 0 | 0 | v | 0 | 0 | v | 0 | 0 | 0 | 0 0 0 0 0 0 ue~I 0| Ws|
0 | 3 | 3 | 0 | 3 | 3 | 0 | 3 | 3 | 0 3 v 0 0 0 oM dui| Wsd
C TSIEUGIS 7 Jo1S1B0 1 0} s WIPUGS SIUL) | VLIS 58U § [ U DEw 0 Bieis 70U Of SnUUoD O Jal1ou00
e 7 aueTpezIOnan pozioRon Jeinbay 504 0| Japosapoid|
A v 3 3 0 SXOW 19 posn oxs||  iapooepeid
v o [ o SXNW PUe SJHueIg 19] Pasn pow S| Japosepaid
e g o opooop By 90300
m EMO Mo MO ) MO | emo [ Mo | oMo EMO | eMo | im0 [  omO o 195~ mbo0e | ]
L I T L I T L I R R N I R q q a ] [
u dwy | dwy | 0 dwy | duy | e dwy | dwy | € dun | dwy | B e ® e 105 duy € do jnuw WS4
n BUETMD /1 EMO SUETMD // ZMO SUETMD // LMD SUETMO /1 OMO (Papodap) GUEIMD MO | emo [ im0 [ oMo Popodsp 105 Wb q do| WS4 /19pooeg
g MO M0 LMD MO MO | o | MO [ omo MO | emo | M0 | omO Popodsp 105 Wb e do| WS /19pooag
. 510 /e 510 o o o5 uel 18p00aQ
nm Poposapaid Papooapaid Popooapaid o o5 o qns oer|___Japooapela
popoospaid papooapard poposspeid o R
popoospesd popooapeid popoospeid av9 PoPOSUS 10UBUO N313[__ iepospeid|
M I T T T Juowwog
A POWeuoq L EMOPON | 0 MOPOW | 2 ZMOPON. L ZMOPOWN | 0 ZMOPOW | LAMOPOW L LMOPOW | 0 LMOPON | 2 OMOPOW VOMOPON [0 OMOPONMEIS| oueTouod | ZMOSUE1 | LMOSUET | OMOOUETMRIS | MOOWd | ZMO | MO OMO VeIS apoieiney oeIs WS Ieubis|  uj pajesouo)
130U XX o4 ZE/99} POZUOIIA 9POW dUR| GZE/G9) POZLIORIA 2£/a9} POZLI0OA av9 seinBoy dA;

67



Appendix B

Synthesis

This appendix contains additional results as well as details about the synthesis setup
used. The synthesis is performed using the TSMC65 technology.

B.1. Critical path of default OTBN

Contrary to the baseline and optimized designs, the critical path of the default OTBN
design, at 8 ns, is through the BN ALU. This path is shown in Figure B.1 and requires
7.6179 ns. It starts also at the flops holding the predecoded control signals for the Bignum
register file. Then passages the Bignum register file read port ‘rd_data_b_intg o” and
enters the BN ALU as operand b for the shifter. After the shifter the path leads through
the blanker and from there the actual path it is not exactly clear as the report only states
library cells. Presumably the path goes through the Adder Y computation and then into
the result MUX. The next reported net is the result leaving the BN ALU. From there it
propagates straight through integrity encoding blocks and finally into the write port of
the Bignum register file.

The delay distribution is shown in Figure B.2 and Figure B.3. There are two main
contributors to the critical path. Firstly, the shifter adds a delay of 1.9615 ns and secondly,
the part between the blanker and the result MUX adds 2.6459 ns. The second part most
probably includes the Adder Y computation.

B.2. Critical path comparison of all designs

In the following, the critical paths of the default, baseline and optimized designs are
compared. For each design there is a figure where the critical path is normalized. With
these plots it is easier to compare the effects of the contributing elements between
two designs. Figure B.4 shows the default design, Figure B.5 the baseline design and
Figure B.6 the optimized design.
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Parameter Value

Clock uncertainty (setup) 0.2

Clock uncertainty (hold) 0.1

Maximal transition (Clock and Data) 0.1

Input delay 0.3 - clock period
Output delay 0.3 - clock period

Table B.1.: Synthesis constraints used for all designs.

B.3. Setup details

The synthesis was performed for TSMC65 with Synopsis 2019.03 with the constraints
given in Table B.1. To set the special constraint for the security related modules, a
‘set_size_only’ constraint was applied to all instances. This was done by adding a special
name tag to the module and then searching through all design components for this tag.
The synthesis was run with an established setup created by the IIS. This setup uses the
compile_ultra command with the option -no_autoungroup set.
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1 Introduction

OpenTitan is a collaborative, open-source hardware ecosystem that bundles an array
of individual IPs for deployment in a wide range of applications alongside the top-
level designs Earl Grey, a standalone micro-controller, and Darjeeling, an integrated
execution environment. The principal module of the project is the Ibex core, a 32-bit
general-purpose RISC-V processor implementing the Integer (I), Integer Multiplication/-
Division (M), Compressed (C) and Bit Manipulation (B) instruction sets. Although the
performance of the Ibex core is adequate for most programs it lacks the capabilities for
the efficient execution of big-number arithmetic that is often found in cryptographic
algorithms. As a remedy, OpenTitan features a second core termed the OpenTitan
Big-Number Accelerator (OTBN) whose base instruction set, reminiscent of RV32I, is
extended with big-number instructions that operate on 256-bit registers. This means that,
in the presence of the OTBN, the Ibex core can offload certain computations, e.g., RSA
exponentiation, which can significantly improve the overall runtime of a program.

Generally speaking, invoking the accelerator is only sensible if the cost of moving data
between Ibex and the big-number accelerator plus the runtime of the loaded OTBN
program improves on an Ibex-only execution, which would not be the case for the
computation of AES block cipher (a dedicated IP block already exists), but might be
for lattice-based algorithms as standardized in the NIST post-quantum cryptography
portfolio. In fact, the most salient computation in lattice cryptography is the Number
Theoretic Transform (NTT) which is a discrete variant of the Fast Fourier Transform.
More specifically, the NTT is an in-place algorithm composed of a repeated computation
of a specific function (called butterfly) over the ring of integers modulo a small prime
number (usually smaller than 32 bits), which would benefit from Single Instruction
Multiple Data (SIMD) vector instructions that compute multiple butterflies in parallel.
Note that the current iteration of the OTBN does not feature any kind of vectorization in
the big-number instruction set.

2 Project Description

Accelerating the NTT with SIMD instructions is not a novel idea and has been investi-
gated in the literature before in the context of RISV-V/OTBN ISA extensions leading to
several competing designs [1, 2, 3, 4, 5, 6, 7] exhibiting various trade-offs. The goal of
this project lies in the consolidation of those schemes and an ultimate proposal proposal
of an efficient OTBN SIMD ISA extension that is suitable for lattice-based cryptography
but also useful for other applications that can benefit from vectorized computations. The
project proceeds in three phases that build on each other (a rough time frame is assigned
to each phase):



2.1 Phase 1 (Fundamentals, 3 Weeks)

The first phase of the project is dedicated to literature review and becoming comfortable
with the OpenTitan/OTBN toolchain. More specifically, the student should attain
sufficient knowledge of the state of the art SIMD RISC-V ISA extensions in order to derive
a detailed comparison and identify the relevant optimization strategies. Concurrently,
the student should be able to write OTBN programs and test them both in the Python
simulator and the Verilator test rig.

Milestones:

* Refresh knowledge of programming in C and RISC-V assembly. Use that knowl-
edge to dive into the OpenTitan/OTBN toolchain.

¢ Write some OTBN programs, e.g., a straightforward NTT implementation, and run
them in the Python simulator or simulate them via Verilator.

* Create a thorough comparison of all the optimizations from the linked literature
and tabulate their efficiency gains in terms of runtime, memory, hardware footprint
and identify the most relevant techniques.

2.2 Phase 2 (Baseline, 5 Weeks)

In the second phase, the student implements a baseline OTBN SIMD ISA extension for a
predetermined set of functions, for instance ADD/MUL etc., and creates a benchmarking
framework to extract its metrics. The ISA extension can either stem directly from a paper
or be a cherry-picked selection from multiple sources.

Milestones:

* Refresh knowledge of SystemVerilog and RTL programming in general. Dive into
the OTBN source code and implement the chosen ISA extension.

* Using the available tools at ETH, prepare a synthesis flow to compile RTL designs
into netlists to extract circuit area and timing figures. Having a working synthesis
flow will save time when it comes to the implementation in the second phase. The
supervisors from ETH and lowRISC will be assisting the student in this task.

¢ Thoroughly test the implementation with a comprehensive test suite. Verify the
efficiency gains by running a program against it, for example the NTT (for small
and large prime numbers), and report the runtime (cycles) and memory (bytes)
footprint.

¢ Synthesize the new OTBN with the available synthesis tools at ETH and tabulate
the induced hardware overhead both for circuit area and timing (critical path).



2.3 Phase 3 (Optimization, 6 Weeks)

Lastly, the third phase is concerned with optimisation and is thus open-ended. The
student is expected to research the potential improvements to the implemented ISA
extension from the previous phase. The goal is to reach an efficient low-overhead imple-
mentation that both accelerates the computation of the NTT in lattice-based algorithms
but is simultaneously general enough to be of use for other applications as well that
could benefit from vectorized OTBN instructions.

Milestones:

* Research potential optimisation in the field of SIMD RISC-V instructions and apply
them to the baseline implementation.

® Report efficiency improvements and corresponding overheads.

e Start writing the final report.

3 Project Realization

The progress of the project is tracked with weekly write-ups by the student and discussed
in a weekly meeting. In these write-ups (length at most 1 page), the student summarizes
all the tasks he tackled in the previous week and describes the plan for the current week.
If the student wishes, an intermediate report can be submitted after the completion of
the second phase, which can serve as a partial draft of the final report.

3.1 Report

Documentation is an important and often overlooked aspect of engineering. A final
report has to be completed within this project.

The common language of engineering is de facto English. Therefore, the final report of
the work is preferred to be written in English.

Any form of word processing software is allowed for writing the reports, nevertheless
the use of IXTEX with Inkscape or Tgif! or any other vector drawing software (for
block diagrams) is strongly encouraged by the IIS staff. If you write the report in
ETEX, we offer an instructive, ready-to-use template, which can be downloaded at
https://iis-people.ee.ethz.ch/~vlsil/templates/report.tar.gz.

ITgif is a simple vector drawing software, quite useful for drawing block diagrams. For further informa-
tion about Tgif we refer to http://bourbon.usc.edu/tgif/vector.html and http://eda.ee.ethz.ch/
index.php/Tgif.



Final Report The final report has to be presented at the end of the project and a digital
as well as one printed copy need to be handed in and remain property of the IIS. Note
that this task description is part of your report and has to be attached to your final
report.

3.2 Presentation

There will be a presentation (15 min presentation and 5 min Q&A) at the end of this
project in order to present your results to a wider audience. The exact date will be
determined towards the end of the work.

3.3 HDL Guidelines

Naming Conventions: Adapting a consistent naming scheme is one of the most im-
portant steps in order to make your code easy to understand. If signals, processes,
and entities are always named the same way, any inconsistency can be detected easier.
Moreover, if a design group shares the same naming convention, all members would
immediately feel at home with each others code. The naming conventions we follow
in the PULP project are at https://github.com/pulp-platform/style-guidelines for
reference.

4 Deliverables

In order to complete the project successfully, the following deliverables have to be
submitted at the end of the work:

¢ Project plan
¢ Final report incl. presentation slides
* Source code and documentation for all developed software and hardware

¢ Testsuites (software) and testbenches (hardware)

Synthesis and implementation scripts
FPGA bitstreams
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