
Quickly Finding
RISC-V Code Quality Issues
with Differential Analysis

Luís Marques
<luismarques@lowrisc.org>

LLVM Dev Meeting, Oct 2020

Problem

The Good News

● RISC-V target accepted into LLVM
● Successfully compiled thousands of Linux packages

● Overall high performance generated code
● Benefiting from LLVM’s target-independent optimizations
● Benchmark speed results similar to RISC-V GCC

The Bad News

● We still had cases of poor RISC-V code generation for
various code patterns (e.g. simple expressions)

● These issues had gone unnoticed when we looked at the
generated code for large programs and benchmarks

● How could we quickly find them?

int f(int a, int b) {
 return -(a == b);
}

Source

 sub a0, a0, a1
 seqz a0, a0
 neg a0, a0
 ret

 add a2, zero, a0
 addi a0, zero, -1
 beq a2, a1, .LBB0_2
 mv a0, zero
.LBB0_2:
 ret

GCC 9

Clang 9

C Source

Clang

GCC

RISC-V
Assembly

RISC-V
Assembly

Random C
Code Generator

Case
Code Reducer

(creduce)

Cost
Clang

>
GCC

Approach

● Project LongFruit: differential analysis of Clang vs GCC
● Python tool

● The simplest possible implementation that could work
● Custom random C code generator

● Recursive descent direct code generator
● Optimized for our needs (focuses on problematic areas)

● RISC-V assembly parser and instruction cost estimator
● Very simple cost model, based on instruction class
(ALU, FPU, load/store, branch, etc.)

● Plumbing to: run the random C code generator; compile
the source with both Clang and GCC; analyze the
resulting assembly; compare the estimated costs; filter
out uninteresting cases; run a code reducer on the
source code; save each reduced case to a file

Results

● Very simple tool, but highly effective
● Finds candidate issues in a few seconds, reduces them
in a few minutes

● Immediately found many cases of low-hanging fruit
● Manual triage reduced the initial batch to around a
dozen independent issues.

● Code quality issues spanned a variety of categories.
● Resulted in multiple patches to address those issues

● We still have a backlog of issues to address

How many more
cases like this
were still out

there?

add ALU = 1
addi ALU = 1
beq Branch = 3
mv ALU = 1
 + = 6

sub ALU = 1
seqz ALU = 1
neg ALU = 1
 + = 3

int f(int a, int b) {
 return -(a == b);
}

Cost
comparison

Minimal case?

https://github.com/lowRISC/longfruit

Good assembly
code

☹

Unnecessary
branch

Simple Cost
Estimator

Simple Cost
Estimator

Related Work

● Finding Missed Optimizations in LLVM (and other
compilers). G. Barany, 2018 European LLVM Developers
Meeting.

Cost
GCC

≥
Clang

● Poor constant materializations
● Unnecessary sign extensions
● Use of branches instead of comparison instructions
● Extraneous floating-point conversions
● Dead instructions

More examples:

Example Many more...

Inefficient use of offsets in loads and stores

C source

 float f() {
 return 1.0;
 }

Test Scenario

 RV64GC ILP64D

GCC 10 Output

 lui a5,%hi(.LC0)
 flw fa0,%lo(.LC0)(a5)
 ret

Clang 10 Output

 lui a0, %hi(.LCPI0_0)
 addi a0, a0, %lo(.LCPI0_0)
 flw fa0, 0(a0)
 ret

Fix https://reviews.llvm.org/D79690

Clang 11 Output

 lui a0, %hi(.LCPI0_0)
 flw fa0, %lo(.LCPI0_0)(a0)
 ret

https://github.com/lowRISC/longfruit
https://gist.github.com/luismarques/b3cad6e0178a6b1058eca98876b49ef2
https://reviews.llvm.org/D79690
https://github.com/lowRISC/longfruit
https://gist.github.com/luismarques/b3cad6e0178a6b1058eca98876b49ef2

	Slide 1

